numpy的使用
什么是numpy
一个在Python中做科学计算的基础库,重在数值计算,也是大部分PYTHON科学计算库的基础库,多用于在大型、多维数组上执行数值运算
numpy基础
- 创建数组
import numpy as np
# 使用numpy生成数组,得到ndarray类型的类型
t1 = np.array([1, 2, 3])
print(t1)
print(type(t1))
t2 = np.array(range(10))
print(t2)
print(t2.dtype)
t3 = np.arange(4, 10, 2)
print(t3)
# t3.dtype 是数组中存储数据的类型
print(t3.dtype)
# 使用dtype参数来制定创建数据的类型
t4 = np.arange(10, dtype=float)
# t4 = np.arange(10, dtype="float32")
# t4 = np.arange(10, dtype="i1")
print(t4)
print(t4.dtype)
# numpy中的bool类型
t5 = np.array([1,1,1,1,0,0,0], dtype=bool)
print(t5)
print(t5.dtype)
# 改变数据类型
t6 = t5.astype("int8")
print(t6)
print(t6.dtype)
# numpy中的小数
t7 = np.array([random.random() for i in range(10)])
print(t7)
print(t7.dtype)
# 修改小数显示位数
t8 = np.round(t7,2)
print(t8)
- numpy的数据类型
numpy的形状
In [1]: import numpy as np
In [2]: a = np.array([[3,4,5,6,7,8],[4,5,6,7,8,9,]])
In [3]: a
Out[3]:
array([[3, 4, 5, 6, 7, 8],
[4, 5, 6, 7, 8, 9]])
In [4]: # 查看数组的形状
In [5]: a.shape
Out[5]: (2, 6)
In [6]: # 修改数组的形状
In [7]: a.reshape(3,4)
Out[7]:
array([[3, 4, 5, 6],
[7, 8, 4, 5],
[6, 7, 8, 9]])
In [8]: a.shape
Out[8]: (2, 6)
In [9]: # 没有接收返回值,所有并没有真正的修改
In [10]: b = a.reshape(3,4)
In [11]: b.shape
Out[11]: (3, 4)
In [12]: b
Out[12]:
array([[3, 4, 5, 6],
[7, 8, 4, 5],
[6, 7, 8, 9]])
In [13]: # 把数组转为一维数据
In [14]: b.reshape(1,12)
Out[14]: array([[3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 9]])
In [15]: # 上面的方法看起来像,但是仍然是二维数据
In [16]: b.flatten()
Out[16]: array([3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 9])
In [17]: # flatten才是真正的转为了一维数据
In [1]: import numpy as np
In [2]: t1 = np.arange(12)
In [3]: t1
Out[3]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
# t1就是一维数组
In [4]: t1.shape
Out[4]: (12,)
In [5]: t2 = np.array([[1,2,3],[4,5,6]])
In [6]: t2
Out[6]:
array([[1, 2, 3],
[4, 5, 6]])
# shape查看数组的形状
# t2这种就是二维数组
In [7]: t2.shape
Out[7]: (2, 3)
# t3就是三维数组
In [13]: t3 = np.array([[[1,2,3],[4,5,6]],[[7,8,9,],[10,11,12]]])
In [14]: t3
Out[14]:
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
In [15]: t3.shape
Out[15]: (2, 2, 3)
# 修改数组的形状 reshape可以改变数组的形状 注意 总的数据个数不能变
In [16]: t4 = np.arange(12)
In [17]: t4
Out[17]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
In [18]: t4.reshape((3,4))
Out[18]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
# flatten可以将多维数组转为一维数组
In [19]: t4.flatten()
Out[19]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
数组的计算
numpy的广播机制,导致在运算过程中,加减乘除的值被广播到所有的元素上面,简单理解就是加减乘除会对数组中的每一个数进行处理
In [28]: t4
Out[28]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [29]: t4+2
Out[29]:
array([[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13]])
-
除以0会得出nan 和inf 0除以0 会出现nan 其他数字除以0 会出现inf
-
数据与数据之间的运算会将对应位置进行运算(数组形状要必须一样)
In [31]: t5 = np.arange(24).reshape((4,6))
In [32]: t5
Out[32]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [33]: t6 = np.arange(100,124).reshape((4,6))
In [34]: t6
Out[34]:
array([[100, 101, 102, 103, 104, 105],
[106, 107, 108, 109, 110, 111],
[112, 113, 114, 115, 116, 117],
[118, 119, 120, 121, 122, 123]])
In [35]: t6+t5
Out[35]:
array([[100, 102, 104, 106, 108, 110],
[112, 114, 116, 118, 120, 122],
[124, 126, 128, 130, 132, 134],
[136, 138, 140, 142, 144, 146]])
- 不同形状的会在相同的维度上进行运算,
In [36]: t7 = np.arange(0, 6)
In [37]: t7
Out[37]: array([0, 1, 2, 3, 4, 5])
In [38]: t5
Out[38]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [39]: t5-t7
Out[39]:
array([[ 0, 0, 0, 0, 0, 0],
[ 6, 6, 6, 6, 6, 6],
[12, 12, 12, 12, 12, 12],
[18, 18, 18, 18, 18, 18]])
In [40]: t8 = np.arange(4).reshape((4,1))
In [41]: t8
Out[41]:
array([[0],
[1],
[2],
[3]])
In [42]: t5-t8
Out[42]:
array([[ 0, 1, 2, 3, 4, 5],
[ 5, 6, 7, 8, 9, 10],
[10, 11, 12, 13, 14, 15],
[15, 16, 17, 18, 19, 20]])
- 两个所有的维度都不相同的数组不能进行运算
In [43]: t9 = np.arange(10)
In [44]: t9
Out[44]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [45]: t5
Out[45]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [46]: t5-t9
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-46-dcf9c8dd3788> in <module>
----> 1 t5-t9
ValueError: operands could not be broadcast together with shapes (4,6) (10,)
numpy的轴
-
在numpy中可以理解为方向,使用0,1,2...数字表示,对于一个一维数组,只有一个0轴,对于2维数组(shape(2,2)),有0轴和1轴,对于三维数组(shape(2,2, 3)),有0,1,2轴
-
有了轴的概念之后,我们计算会更加方便,比如计算一个2维数组的平均值,必须指定是计算哪个方向上面的数字的平均值
-
那么问题来了: 在前面的知识,轴在哪里?回顾np.arange(0,10).reshape((2,5)),reshpe中2表示0轴长度(包含数据的条数)为2,1轴长度为5,2X5一共10个数据
numpy读取本地数据
- np.loadtxt(fname,dtype=np.float,delimiter=None,skiprows=0,usecols=None,unpack=False)
import numpy as np
us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
# unpack 属性可进行转置
t1 = np.loadtxt(us_file_path, delimiter=",", dtype="int", unpack=True)
t2 = np.loadtxt(uk_file_path, delimiter=",", dtype="int")
print(t1)
numpy中二维数组的转置方法
- transpose
- T
- swapaxes
In [48]: t2 = np.arange(24).reshape((4,6))
In [49]: t2
Out[49]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [50]: t2.transpose()
Out[50]:
array([[ 0, 6, 12, 18],
[ 1, 7, 13, 19],
[ 2, 8, 14, 20],
[ 3, 9, 15, 21],
[ 4, 10, 16, 22],
[ 5, 11, 17, 23]])
In [51]: t2.T
Out[51]:
array([[ 0, 6, 12, 18],
[ 1, 7, 13, 19],
[ 2, 8, 14, 20],
[ 3, 9, 15, 21],
[ 4, 10, 16, 22],
[ 5, 11, 17, 23]])
In [52]: t2.swapaxes(1, 0)
Out[52]:
array([[ 0, 6, 12, 18],
[ 1, 7, 13, 19],
[ 2, 8, 14, 20],
[ 3, 9, 15, 21],
[ 4, 10, 16, 22],
[ 5, 11, 17, 23]])
numpy索引和切片
import numpy as np
us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
t1 = np.loadtxt(us_file_path, delimiter=",", dtype="int")
# t2 = np.loadtxt(uk_file_path, delimiter=",", dtype="int")
print(t1)
print("*"*100)
# 取行
print(t1[2])
print("*"*100)
# 取连续的多行
print(t1[2:])
print("*"*100)
# 取不连续的多行,需要多加一对方括号
print(t1[[2, 8, 10]])
print("*"*100)
# 通用方法 方括号内,逗号前面表示需要取的行,逗号后面表示需要取的列
print(t1[1, :])
print("*"*100)
# 取列
print(t1[:, 0])
print("*"*100)
# 取连续的多列
print(t1[:, 2:])
# 两个冒号,相当于取步长
print(t1[:, 2::2])
print("*"*100)
# 取不连续的多列
print(t1[:, [1, 3]])
print("*"*100)
# 取行和列
print(t1[3, 3])
print(type(t1[3, 3]))
print("*"*100)
# 取多行多列
print(t1[2:4, 0:2])
print("*"*100)
# 取多个不相邻的点
print(t1[[0, 2], [0, 1]])
print(t1[[0, 2, 2], [0, 1, 2]])
# 选出来的结果是(0,0),(2,1),(2,2)
print("*"*100)
numpy中数值的修改
- 修改numpy中的数值,直接将对应位置数据取出来然后重新赋值就可以
In [3]: t
Out[3]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [4]: t[:,2:4] = 0
In [5]: t
Out[5]:
array([[ 0, 1, 0, 0, 4, 5],
[ 6, 7, 0, 0, 10, 11],
[12, 13, 0, 0, 16, 17],
[18, 19, 0, 0, 22, 23]])
- 按条件进行赋值
- 将小区10 的数值修改为3
In [7]: t2
Out[7]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [8]: t2<10
Out[8]:
array([[ True, True, True, True, True, True],
[ True, True, True, True, False, False],
[False, False, False, False, False, False],
[False, False, False, False, False, False]])
In [10]: t2[t2<10] = 3
In [11]: t2
Out[11]:
array([[ 3, 3, 3, 3, 3, 3],
[ 3, 3, 3, 3, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
numpy中的三元运算符
In [12]: t3 = np.arange(24).reshape(4,6)
In [13]: t3
Out[13]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
# where的用法与三元运算符类似
In [15]: np.where(t3<10, 0, 10)
Out[15]:
array([[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 10, 10],
[10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10]])
- numpy中的clip(裁剪)
In [16]: t4 = np.arange(24).reshape(4,6)
In [17]: t4
Out[17]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
# clip意思是将小于10的替换成10,大于18的替换成18
In [18]: t4.clip(10,18)
Out[18]:
array([[10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 18, 18, 18, 18, 18]])
numpy中的nan和inf
-
nan(NAN,Nan):not a number表示不是一个数字
-
什么时候numpy中会出现nan:
- 当我们读取本地的文件为float的时候,如果有缺失,就会出现nan
- 当做了一个不合适的计算的时候(比如无穷大(inf)减去无穷大)
-
inf(-inf,inf):infinity,inf表示正无穷,-inf表示负无穷
-
什么时候回出现inf包括(-inf,+inf)
-
比如一个数字除以0,(python中直接会报错,numpy中是一个inf或者-inf)
-
nan的特殊属性
- 两个nan是不相等的
In [19]: np.nan == np.nan Out[19]: False
- np.nan != np.nan
In [21]: np.nan != np.nan Out[21]: True
- 利用以上的特性,可以判断数组中的nan的个数
In [36]: t1 Out[36]: array([ 1., 2., nan]) In [37]: np.count_nonzero(t1 != t1) Out[37]: 1
- 由于2,那么如何判断一个数字是否为nan呢?通过np.isnan(a)来判断,返回bool类型
In [36]: t1 Out[36]: array([ 1., 2., nan]) In [38]: np.isnan(t1) Out[38]: array([False, False, True])
- nan和任何值计算都为nan
In [41]: t1 Out[41]: array([ 1., 2., nan]) In [42]: t2 Out[42]: array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) In [43]: t2+t1 Out[43]: array([[ 1., 3., nan], [ 4., 6., nan], [ 7., 9., nan], [10., 12., nan]]) In [44]: t1 Out[44]: array([ 1., 2., nan]) In [45]: np.sum(t1) Out[45]: nan
numpy中的数学运算
求和:t.sum(axis=None)
均值:t.mean(a,axis=None) 受离群点的影响较大
中值:np.median(t,axis=None)
最大值:t.max(axis=None)
最小值:t.min(axis=None)
极值:np.ptp(t,axis=None) 即最大值和最小值只差
标准差:t.std(axis=None)
- 标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值反映出数据的波动稳定情况,越大表示波动越大,越不稳定
numpy中nan的替换注意事项
- 单纯的把nan替换为0肯定是不合适的,全部替换为0后,替换之前的平均值如果大于0,替换之后的均值肯定会变小,所以更一般的方式是把缺失的数值替换为均值(中值)或者是直接删除有缺失值的一行
import numpy as np
def fill_ndarray(t1):
for i in range(t1.shape[1]):
temp_col = t1[:, i] # 当前这一列
nan_num = np.count_nonzero(temp_col != temp_col)
if nan_num != 0: # 如果不为0,说明这一列数据中有nan
temp_not_nan = temp_col[temp_col == temp_col] # 当前列中不为nan的array
temp_col[np.isnan(temp_col)] = temp_not_nan.mean() # 选中当前为nan的位置,把值赋值为平均数
return t1
if __name__ == "__main__":
t1 = np.arange(12).reshape((3, 4)).astype("float")
t1[1, 2:] = np.nan
print(t1)
t1 = fill_ndarray(t1)
print(t1)
数组的拼接
In [7]: t1
Out[7]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
In [8]: t2
Out[8]:
array([[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36],
[37, 38, 39, 40, 41, 42],
[43, 44, 45, 46, 47, 48]])
# vstack 竖直拼接
In [9]: np.vstack((t1,t2))
Out[9]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36],
[37, 38, 39, 40, 41, 42],
[43, 44, 45, 46, 47, 48]])
# hstack 水平拼接
In [10]: np.hstack((t1,t2))
Out[10]:
array([[ 0, 1, 2, 3, 4, 5, 25, 26, 27, 28, 29, 30],
[ 6, 7, 8, 9, 10, 11, 31, 32, 33, 34, 35, 36],
[12, 13, 14, 15, 16, 17, 37, 38, 39, 40, 41, 42],
[18, 19, 20, 21, 22, 23, 43, 44, 45, 46, 47, 48]])
numpy数组的行列交换
In [11]: t1
Out[11]:
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
# 进行行交换
In [12]: t1[[1,2],:] = t1[[2,1],:]
In [13]: t1
Out[13]:
array([[ 0, 1, 2, 3, 4, 5],
[12, 13, 14, 15, 16, 17],
[ 6, 7, 8, 9, 10, 11],
[18, 19, 20, 21, 22, 23]])
# 进行列交换
In [14]: t2
Out[14]:
array([[25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36],
[37, 38, 39, 40, 41, 42],
[43, 44, 45, 46, 47, 48]])
In [15]: t2[:,[0,2]] = t2[:,[2,0]]
In [16]: t2
Out[16]:
array([[27, 26, 25, 28, 29, 30],
[33, 32, 31, 34, 35, 36],
[39, 38, 37, 40, 41, 42],
[45, 44, 43, 46, 47, 48]])
numpy更多的方法
- 获取最大最小值的位置
np.argmax(t,axis=0)
np.argmin(t,axis=1)
- 创建一个全0的数组
np.zeros((3,4))
- 创建一个全1的数组
np.ones((3,4))
- 创建一个对角线为1的正方形数组
np.eye(3)
numpy生成随机数
import numpy as np
np.random.seed(10)
t = np.random.randint(0, 20, (3, 4))
print(t)
"""
[[ 9 4 15 0]
[17 16 17 8]
[ 9 0 10 8]]
"""
numpy的注意点 copy和view
-
a=b 完全不复制,a和b相互影响
-
a = b[:],视图的操作,一种切片,会创建新的对象a,但是a的数据完全由b保管,他们两个的数据变化是一致的,
-
a = b.copy(),复制,a和b互不影响