【算法】通过TreeMap理解红黑树
本文以Java TreeMap为例,从源代码层面,结合详细的图解,剥茧抽丝地讲解红黑树(Red-Black tree)的插入,删除以及由此产生的调整过程。
总体介绍
Java TreeMap实现了SortedMap接口,也就是说会按照key
的大小顺序对Map中的元素进行排序,key
大小的评判可以通过其本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator)。
TreeMap底层通过红黑树(Red-Black tree)实现,也就意味着containsKey()
, get()
, put()
, remove()
都有着log(n)
的时间复杂度。其具体算法实现参照了《算法导论》。
出于性能原因,TreeMap是非同步的(not synchronized),如果需要在多线程环境使用,需要程序员手动同步;或者通过如下方式将TreeMap包装成(wrapped)同步的:
SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));
具体来说,红黑树是满足如下条件的二叉查找树(binary search tree):
- 每个节点要么是红色,要么是黑色。
- 根节点必须是黑色
- 红色节点不能连续(也即是,红色节点的孩子和父亲都不能是红色)。
- 对于每个节点,从该点至
null
(树尾端)的任何路径,都含有相同个数的黑色节点。 - 每个叶节点(null)都是黑色的。
在树的结构发生改变时(插入或者删除操作),往往会破坏上述条件3或条件4,需要通过调整使得查找树重新满足红黑树的条件。
预备知识
前文说到当查找树的结构发生改变时,红黑树的条件可能被破坏,需要通过调整使得查找树重新满足红黑树的条件。调整可以分为两类:一类是颜色调整,即改变某个节点的颜色;另一类是结构调整,集改变检索树的结构关系。结构调整过程包含两个基本操作:左旋(Rotate Left),右旋(RotateRight)。
左旋
左旋的过程是将x
的右子树绕x
逆时针旋转,使得x
的右子树成为x
的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。
TreeMap中左旋代码如下:
//Rotate Left private void rotateLeft(Entry<K,V> p) { if (p != null) { Entry<K,V> r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null) root = r; else if (p.parent.left == p) p.parent.left = r; else p.parent.right = r; r.left = p; p.parent = r; } }
右旋
右旋的过程是将x
的左子树绕x
顺时针旋转,使得x
的左子树成为x
的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。
TreeMap中右旋代码如下:
//Rotate Right private void rotateRight(Entry<K,V> p) { if (p != null) { Entry<K,V> l = p.left; p.left = l.right; if (l.right != null) l.right.parent = p; l.parent = p.parent; if (p.parent == null) root = l; else if (p.parent.right == p) p.parent.right = l; else p.parent.left = l; l.right = p; p.parent = l; } }
方法剖析
get()
get(Object key)
方法根据指定的key
值返回对应的value
,该方法调用了getEntry(Object key)
得到相应的entry
,然后返回entry.value
。因此getEntry()
是算法的核心。算法思想是根据key
的自然顺序(或者比较器顺序)对二叉查找树进行查找,直到找到满足k.compareTo(p.key) == 0
的entry
。
具体代码如下:
//getEntry()方法 final Entry<K,V> getEntry(Object key) { ...... if (key == null)//不允许key值为null throw new NullPointerException(); Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序 Entry<K,V> p = root; while (p != null) { int cmp = k.compareTo(p.key); if (cmp < 0)//向左找 p = p.left; else if (cmp > 0)//向右找 p = p.right; else return p; } return null; }
put()
put(K key, V value)
方法是将指定的key
, value
对添加到map
里。该方法首先会对map
做一次查找,看是否包含该元组,如果已经包含则直接返回,查找过程类似于getEntry()
方法;如果没有找到则会在红黑树中插入新的entry
,如果插入之后破坏了红黑树的约束,还需要进行调整(旋转,改变某些节点的颜色)。
public V put(K key, V value) { ...... int cmp; Entry<K,V> parent; if (key == null) throw new NullPointerException(); Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序 do { parent = t; cmp = k.compareTo(t.key); if (cmp < 0) t = t.left;//向左找 else if (cmp > 0) t = t.right;//向右找 else return t.setValue(value); } while (t != null); Entry<K,V> e = new Entry<>(key, value, parent);//创建并插入新的entry if (cmp < 0) parent.left = e; else parent.right = e; fixAfterInsertion(e);//调整 size++; return null; }
上述代码的插入部分并不难理解:首先在红黑树上找到合适的位置,然后创建新的entry
并插入(当然,新插入的节点一定是树的叶子)。难点是调整函数fixAfterInsertion()
,前面已经说过,调整往往需要1.改变某些节点的颜色,2.对某些节点进行旋转。
调整函数fixAfterInsertion()
的具体代码如下,其中用到了上文中提到的rotateLeft()
和rotateRight()
函数。通过代码我们能够看到,情况2其实是落在情况3内的。情况4~情况6跟前三种情况是对称的,因此图解中并没有画出后三种情况,读者可以参考代码自行理解。
//红黑树调整函数fixAfterInsertion() private void fixAfterInsertion(Entry<K,V> x) { x.color = RED; while (x != null && x != root && x.parent.color == RED) { if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { Entry<K,V> y = rightOf(parentOf(parentOf(x))); if (colorOf(y) == RED) {//如果y为null,则视为BLACK setColor(parentOf(x), BLACK); // 情况1 setColor(y, BLACK); // 情况1 setColor(parentOf(parentOf(x)), RED); // 情况1 x = parentOf(parentOf(x)); // 情况1 } else { if (x == rightOf(parentOf(x))) { x = parentOf(x); // 情况2 rotateLeft(x); // 情况2 } setColor(parentOf(x), BLACK); // 情况3 setColor(parentOf(parentOf(x)), RED); // 情况3 rotateRight(parentOf(parentOf(x))); // 情况3 } } else { Entry<K,V> y = leftOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); // 情况4 setColor(y, BLACK); // 情况4 setColor(parentOf(parentOf(x)), RED); // 情况4 x = parentOf(parentOf(x)); // 情况4 } else { if (x == leftOf(parentOf(x))) { x = parentOf(x); // 情况5 rotateRight(x); // 情况5 } setColor(parentOf(x), BLACK); // 情况6 setColor(parentOf(parentOf(x)), RED); // 情况6 rotateLeft(parentOf(parentOf(x))); // 情况6 } } } root.color = BLACK; }
remove()
remove(Object key)
的作用是删除key
值对应的entry
,该方法首先通过上文中提到的getEntry(Object key)
方法找到key
值对应的entry
,然后调用deleteEntry(Entry<K,V> entry)
删除对应的entry
。由于删除操作会改变红黑树的结构,有可能破坏红黑树的约束,因此有可能要进行调整。
寻找节点后继
对于一棵二叉查找树,给定节点t,其后继(树种比大于t的最小的那个元素)可以通过如下方式找到:
- t的右子树不空,则t的后继是其右子树中最小的那个元素。
- t的右孩子为空,则t的后继是其第一个向左走的祖先。
后继节点在红黑树的删除操作中将会用到。
TreeMap中寻找节点后继的代码如下:
// 寻找节点后继函数successor() static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { if (t == null) return null; else if (t.right != null) {// 1. t的右子树不空,则t的后继是其右子树中最小的那个元素 Entry<K,V> p = t.right; while (p.left != null) p = p.left; return p; } else {// 2. t的右孩子为空,则t的后继是其第一个向左走的祖先 Entry<K,V> p = t.parent; Entry<K,V> ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } }
remove()
remove(Object key)
的作用是删除key
值对应的entry
,该方法首先通过上文中提到的getEntry(Object key)
方法找到key
值对应的entry
,然后调用deleteEntry(Entry<K,V> entry)
删除对应的entry
。由于删除操作会改变红黑树的结构,有可能破坏红黑树的约束条件,因此有可能要进行调整。
getEntry()
函数前面已经讲解过,这里重点放deleteEntry()
上,该函数删除指定的entry
并在红黑树的约束被破坏时进行调用fixAfterDeletion(Entry<K,V> x)
进行调整。
由于红黑树是一棵增强版的二叉查找树,红黑树的删除操作跟普通二叉查找树的删除操作也就非常相似,唯一的区别是红黑树在节点删除之后可能需要进行调整。现在考虑一棵普通二叉查找树的删除过程,可以简单分为两种情况:
- 删除点p的左右子树都为空,或者只有一棵子树非空。
- 删除点p的左右子树都非空。
对于上述情况1,处理起来比较简单,直接将p删除(左右子树都为空时),或者用非空子树替代p(只有一棵子树非空时);对于情况2,可以用p的后继s(树中大于x的最小的那个元素)代替p,然后使用情况1删除s(此时s一定满足情况1,可以画画看)。
基于以上逻辑,红黑树的节点删除函数deleteEntry()
代码如下:
// 红黑树entry删除函数deleteEntry() private void deleteEntry(Entry<K,V> p) { modCount++; size--; if (p.left != null && p.right != null) {// 2. 删除点p的左右子树都非空。 Entry<K,V> s = successor(p);// 后继 p.key = s.key; p.value = s.value; p = s; } Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) {// 1. 删除点p只有一棵子树非空。 replacement.parent = p.parent; if (p.parent == null) root = replacement; else if (p == p.parent.left) p.parent.left = replacement; else p.parent.right = replacement; p.left = p.right = p.parent = null; if (p.color == BLACK) fixAfterDeletion(replacement);// 调整 } else if (p.parent == null) { root = null; } else { // 1. 删除点p的左右子树都为空 if (p.color == BLACK) fixAfterDeletion(p);// 调整 if (p.parent != null) { if (p == p.parent.left) p.parent.left = null; else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } }
上述代码中占据大量代码行的,是用来修改父子节点间引用关系的代码,其逻辑并不难理解。下面着重讲解删除后调整函数fixAfterDeletion()
。首先请思考一下,删除了哪些点才会导致调整?只有删除点是BLACK的时候,才会触发调整函数,因为删除RED节点不会破坏红黑树的任何约束,而删除BLACK节点会破坏规则4。
跟上文中讲过的fixAfterInsertion()
函数一样,这里也要分成若干种情况。记住,无论有多少情况,具体的调整操作只有两种:1.改变某些节点的颜色,2.对某些节点进行旋转。
上述图解的总体思想是:将情况1首先转换成情况2,或者转换成情况3和情况4。当然,该图解并不意味着调整过程一定是从情况1开始。通过后续代码我们还会 发现几个有趣的规则:a).如果是由情况1之后紧接着进入的情况2,那么情况2之后一定会退出循环(因为x为红色);b).一旦进入情况3和情况4,一定 会退出循环(因为x为root)。
删除后调整函数fixAfterDeletion()
的具体代码如下,其中用到了上文中提到的rotateLeft()
和rotateRight()
函数。通过代码我们能够看到,情况3其实是落在情况4内的。情况5~情况8跟前四种情况是对称的,因此图解中并没有画出后四种情况,读者可以参考代码自行理解。
private void fixAfterDeletion(Entry<K,V> x) { while (x != root && colorOf(x) == BLACK) { if (x == leftOf(parentOf(x))) { Entry<K,V> sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); // 情况1 setColor(parentOf(x), RED); // 情况1 rotateLeft(parentOf(x)); // 情况1 sib = rightOf(parentOf(x)); // 情况1 } if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) { setColor(sib, RED); // 情况2 x = parentOf(x); // 情况2 } else { if (colorOf(rightOf(sib)) == BLACK) { setColor(leftOf(sib), BLACK); // 情况3 setColor(sib, RED); // 情况3 rotateRight(sib); // 情况3 sib = rightOf(parentOf(x)); // 情况3 } setColor(sib, colorOf(parentOf(x))); // 情况4 setColor(parentOf(x), BLACK); // 情况4 setColor(rightOf(sib), BLACK); // 情况4 rotateLeft(parentOf(x)); // 情况4 x = root; // 情况4 } } else { // 跟前四种情况对称 Entry<K,V> sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); // 情况5 setColor(parentOf(x), RED); // 情况5 rotateRight(parentOf(x)); // 情况5 sib = leftOf(parentOf(x)); // 情况5 } if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) { setColor(sib, RED); // 情况6 x = parentOf(x); // 情况6 } else { if (colorOf(leftOf(sib)) == BLACK) { setColor(rightOf(sib), BLACK); // 情况7 setColor(sib, RED); // 情况7 rotateLeft(sib); // 情况7 sib = leftOf(parentOf(x)); // 情况7 } setColor(sib, colorOf(parentOf(x))); // 情况8 setColor(parentOf(x), BLACK); // 情况8 setColor(leftOf(sib), BLACK); // 情况8 rotateRight(parentOf(x)); // 情况8 x = root; // 情况8 } } } setColor(x, BLACK); }
TreeSet
TreeSet
是对TeeMap
的简单包装,对TreeSet
的函数调用都会转换成合适的TeeMap
方法,因此TreeSet
的实现非常简单。这里不再赘述。
// TreeSet是对TreeMap的简单包装 public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, java.io.Serializable { ...... private transient NavigableMap<E,Object> m; // Dummy value to associate with an Object in the backing Map private static final Object PRESENT = new Object(); public TreeSet() { this.m = new TreeMap<E,Object>();// TreeSet里面有一个TreeMap } ...... public boolean add(E e) { return m.put(e, PRESENT)==null; } ...... }
转载:转自http://www.cnblogs.com/CarpenterLee/p/5503882.html