【算法】时间复杂度
一、常用算法复杂度简介
在描述算法复杂度时,经常用到O(1)、O(n)、O(logn)、O(nlogn)来表示对应算法的时间复杂度,
这里进行归纳一下它们代表的含义:
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
O(n):
- O(n):时间复杂度为O(n),代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
O(n^2)
- O(n^2):就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。
- 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
O(logn)
- O(logn)当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍
- 是比线性还要低的时间复杂度)。
- 二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)
- O(nlogn):同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。
- 归并排序就是O(nlogn)的时间复杂度。
O(1)
- O(1):就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。
- 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(哈希冲突不考虑)
二、算法复杂度推导过程
一般用大写O()来表示算法的时间复杂度写法,通常叫做大O记法。
一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。
O(1):常数阶
O(n):线性阶
O(n2):平方阶
大O推导法:
- 用常数1取代运行时间中的所有加法常数
- 在修改后的运行函数中,只保留最高阶项
- 如果最高阶项存在且不是1,则去除与这个项相乘的常数
常数阶:
int sum = 0 ; n = 100; /*执行一次*/ sum = (1+n)*n/2; /*执行一次*/ printf("%d",sum); /*执行一次*/
这个算法的运行次数f(n) = 3,根据推导大O阶的方法,第一步是将3改为1,在保留最高阶项是,它没有最高阶项,因此这个算法的时间复杂度为O(1);
另外,
int sum = 0 ; n = 100; /*执行一次*/ sum = (1+n)*n/2; /*执行第1次*/ sum = (1+n)*n/2; /*执行第2次*/ sum = (1+n)*n/2; /*执行第3次*/ sum = (1+n)*n/2; /*执行第4次*/ sum = (1+n)*n/2; /*执行第5次*/ sum = (1+n)*n/2; /*执行第6次*/ sum = (1+n)*n/2; /*执行第7次*/ sum = (1+n)*n/2; /*执行第8次*/ sum = (1+n)*n/2; /*执行第9次*/ sum = (1+n)*n/2; /*执行第10次*/ printf("%d",sum); /*执行一次*/
上面的两段代码中,其实无论n有多少个,本质是是3次和12次的执行差异。这种与问题的大小无关,执行时间恒定的算法,成为具有O(1)的时间复杂度,又叫做常数阶。
注意:不管这个常数是多少,3或12,都不能写成O(3)、O(12),而都要写成O(1)
此外,对于分支结构而言,无论真假执行的次数都是恒定不变的,不会随着n的变大而发生变化,所以单纯的分支结构(不在循环结构中),其时间复杂度也是O(1)。
线性阶:
线性阶的循环结构会复杂一些,要确定某个算法的阶次,需要确定特定语句或某个语句集运行的次数。因此要分析算法的复杂度,关键是要分析循环结构的运行情况。
int i; for(i = 0 ; i < n ; i++){ /*时间复杂度为O(1)的程序*/ }
对数阶:
int count = 1; while(count < n){ count = count * 2; /*时间复杂度为O(1)的程序*/ }
因为每次count*2后,距离结束循环更近了。也就是说有多少个2 相乘后大于n,退出循环。
数学公式:2x = n --> x = log2n
因此这个循环的时间复杂度为O(logn)
平方阶:
int i; for(i = 0 ; i < n ; i++){ for(j = 0 ; j < n ; j++){ /*时间复杂度为O(1)的程序*/ } }
上面的程序中,对于对于内层循环,它的时间复杂度为O(n),但是它是包含在外层循环中,再循环n次,因此这段代码的时间复杂度为O(n2)。
int i; for(i = 0 ; i < n ; i++){ for(j = 0 ; j < m ; j++){ /*时间复杂度为O(1)的程序*/ } }
但是,如果内层循环改成了m次,时间复杂度就为O(n*m)
再来看一段程序:
int i; for(i = 0 ; i < n ; i++){ for(j = i ; j < n ; j++){ /*时间复杂度为O(1)的程序*/ } }
注意:上面的内层循环j = i ;而不是0
因为i = 0时,内层循环执行了n次,当i=1时,执行了n-1次……当i=n-1时,执行了1次,所以总的执行次数为:
n+(n-1)+(n-1)+...+1 = n(n+1)/2 = n2/2 + n/2
根据大O推导方法,保留最高阶项,n2/2 ,然后去掉这个项相乘的常数,1/2
因此,这段代码的时间复杂度为O(n2)
常见的时间复杂度:
执行次数函数 | 阶 | 术语描述 |
12 | O(1) | 常数阶 |
2n+3 | O(n) | 线性阶 |
3n2+2n+1 | O(n2) | 平方阶 |
5log2n+20 | O(log2n) | 对数阶 |
2n+3nlog2n+19 | O(nlogn) | nlog2n阶 |
6n3+2n2+3n+4 | O(n3) | 立方阶 |
2n | O(2n) | 指数阶 |
时间复杂度所耗费的时间是:
O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) <O(2n) < O(n!) <O(nn)