【服务保护】概念-缓存雪崩,缓存击穿,缓存穿透的概念和应对措施
一、【缓存雪崩】
1.1、概念:
当某一个时刻出现大规模的缓存失效的情况,那么就会导致大量的请求直接打在数据库上面,导致数据库压力巨大,如果在高并发的情况下,可能瞬间就会导致数据库宕机。这时候如果运维马上又重启数据库,马上又会有新的流量把数据库打死。这就是缓存雪崩。
1.2、分析
造成缓存雪崩的关键在于在同一时间大规模的key失效。为什么会出现这个问题呢,有几种可能,
第一种可能是Redis宕机,
第二种可能是采用了相同的过期时间。搞清楚原因之后,那么有什么解决方案呢?
1.3、解决方案
在原有的失效时间上加上一个随机值,比如1-5分钟随机。这样就避免了因为采用相同的过期时间导致的缓存雪崩。
如果真的发生了缓存雪崩,有没有什么兜底的措施?
使用熔断机制。当流量到达一定的阈值时,就直接返回“系统拥挤”之类的提示,防止过多的请求打在数据库上。至少能保证一部分用户是可以正常使用,其他用户多刷新几次也能得到结果。
提高数据库的容灾能力,可以使用分库分表,读写分离的策略。
为了防止Redis宕机导致缓存雪崩的问题,可以搭建Redis集群,提高Redis的容灾性。
二、【缓存击穿】
2.1、概念
其实跟缓存雪崩有点类似,缓存雪崩是大规模的key失效,而缓存击穿是一个热点的Key,有大并发集中对其进行访问,突然间这个Key失效了,导致大并发全部打在数据库上,导致数据库压力剧增。这种现象就叫做缓存击穿。
2.2、分析
关键在于某个热点的key失效了,导致大并发集中打在数据库上。所以要从两个方面解决,第一是否可以考虑热点key不设置过期时间,第二是否可以考虑降低打在数据库上的请求数量。
2.3、解决方案
-
上面说过了,如果业务允许的话,对于热点的key可以设置永不过期的key。
-
使用互斥锁。如果缓存失效的情况,只有拿到锁才可以查询数据库,降低了在同一时刻打在数据库上的请求,防止数据库打死。当然这样会导致系统的性能变差。
三、【缓存穿透】
3.1、概念
我们使用Redis大部分情况都是通过Key查询对应的值,假如发送的请求传进来的key是不存在Redis中的,那么就查不到缓存,查不到缓存就会去数据库查询。假如有大量这样的请求,这些请求像“穿透”了缓存一样直接打在数据库上,这种现象就叫做缓存穿透。
3.2、分析
关键在于在Redis查不到key值,这和缓存击穿有根本的区别,区别在于缓存穿透的情况是传进来的key在Redis中是不存在的。假如有黑客传进大量的不存在的key,那么大量的请求打在数据库上是很致命的问题,所以在日常开发中要对参数做好校验,一些非法的参数,不可能存在的key就直接返回错误提示,要对调用方保持这种“不信任”的心态。
3.3、解决方案:
- 把无效的Key存进Redis中。如果Redis查不到数据,数据库也查不到,我们把这个Key值保存进Redis,设置value=“null”,当下次再通过这个Key查询时就不需要再查询数据库。这种处理方式肯定是有问题的,假如传进来的这个不存在的Key值每次都是随机的,那存进Redis也没有意义。
- 使用布隆过滤器。布隆过滤器的作用是某个 key 不存在,那么就一定不存在,它说某个 key 存在,那么很大可能是存在(存在一定的误判率)。于是我们可以在缓存之前再加一层布隆过滤器,在查询的时候先去布隆过滤器查询 key 是否存在,如果不存在就直接返回。