【数据结构和算法】之递归
一、递归的含义
1、递归案例
周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?别忘了你是程序员,这个可难不倒你,递归就开始排上用场了。于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。
这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。刚刚这个生活中的例子,我们用递推公式将它表示出来就是这样的:
f(n)=f(n-1)+1 其中,f(1)=1
f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1)=1 表示第一排的人知道自己在第一排。有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:
int f(int n) { if (n == 1) return 1; return f(n-1) + 1; }
二、为什么要学习递归
递归是一种应用非常广泛的算法(或者编程技巧)。
之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。所以,搞懂递归非常重要,否则,后面复杂一些的数据结构和算法学起来就会比较吃力。
三、如何识别代码需要用递归实现
1、递归需要满足的三个条件
- 一个问题的解可以分解为几个子问题的解
==>何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。 - 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
==>比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。 - 存在递归终止条件
==>把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。
==>还是电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1)=1,这就是递归的终止条件。
2、如何写出递归代码
- 找到如何将大问题分解为小问题的规律
- 并且基于此写出递推公式,然后再推敲终止条件
- 将递推公式和终止条件翻译成代码
3、一个递归算法的案例:假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?
如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?
我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:
f(n) = f(n-1)+f(n-2)
有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。
当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以 f(1)=1。这个递归终止条件足够吗?
我们可以用 n=2,n=3 这样比较小的数试验一下。n=2 时,f(2)=f(1)+f(0)。如果递归终止条件只有一个 f(1)=1,那 f(2) 就无法求解了。
所以除了 f(1)=1 这一个递归终止条件外,还要有 f(0)=1,表示走 0 个台阶有一种走法,不过这样子看起来就不符合正常的逻辑思维了。
所以,我们可以把 f(2)=2 作为一种终止条件,表示走 2 个台阶,有两种走法,一步走完或者分两步来走。
所以,递归终止条件就是 f(1)=1,f(2)=2。这个时候,你可以再拿 n=3,n=4 来验证一下,这个终止条件是否足够并且正确。
我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:
f(1) = 1; f(2) = 2; f(n) = f(n-1)+f(n-2)
翻译成java代码为:
int f(int n) { if (n == 1) return 1; if (n == 2) return 2; return f(n - 1) + f(n - 2); }
四、递归问题分析的误区
虽然我讲了这么多方法,但是作为初学者的你,现在是不是还是有种想不太清楚的感觉呢?
实际上,我刚学递归的时候,也有这种感觉,这也是文章开头我说递归代码比较难理解的地方。
刚讲的电影院的例子,我们的递归调用只有一个分支,也就是说“一个问题只需要分解为一个子问题”,我们很容易能够想清楚“递“和”归”的每一个步骤,所以写起来、理解起来都不难。
但是,当我们面对的是一个问题要分解为多个子问题的情况,递归代码就没那么好理解了。像我刚刚讲的第二个例子(n个台阶,一次走1步或2步总共的走法),人脑几乎没办法把整个“递”和“归”的过程一步一步都想清楚。
计算机擅长做重复的事情,所以递归正和它的胃口。而我们人脑更喜欢平铺直叙的思维方式。
当我们看到递归时,我们总想把递归平铺展开,脑子里就会循环,一层一层往下调,然后再一层一层返回,试图想搞清楚计算机每一步都是怎么执行的,这样就很容易被绕进去。对于递归代码,这种试图想清楚整个递和归过程的做法,实际上是进入了一个思维误区。
很多时候,我们理解起来比较吃力,主要原因就是自己给自己制造了这种理解障碍。那正确的思维方式应该是怎样的呢?
- 如果一个问题 A 可以分解为若干子问题 B、C、D,你可以假设子问题 B、C、D 已经解决,
- 在此基础上思考如何解决问题 A。而且,你只需要思考问题 A 与子问题 B、C、D 两层之间的关系即可,不需要一层一层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。
- 屏蔽掉递归细节,这样子理解起来就简单多了。
- 编写递归代码的关键是,只要遇到递归,我们就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
五、写递归代码需要注意的点
递归代码要警惕堆栈溢出
递归代码要警惕重复计算(利用上下文解决问题)