python 用 matplotlib 绘制 复合条饼图 实例详解

软件版本:

 

0、import

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.patches import ConnectionPatch

 

1、绘图

# 使图表元素中正常显示中文
mpl.rcParams['font.sans-serif'] = 'SimHei'
# 使坐标轴刻度标签正常显示负号
mpl.rcParams['axes.unicode_minus'] = False


# -------------------------------- 创建画布,划分子区 --------------------------------
fig = plt.figure(figsize=(12, 8),
                 facecolor='cornsilk'
                )
ax1, ax2 = fig.subplots(nrows=1,
                        ncols=2
                       )


# ------------------------------------- 绘制饼图 -------------------------------------
sales = [138, 181, 118, 107, 387]
labels = ['', '', '', '', '其他']

# 
ax1.pie(x=sales,    # 数据
        autopct='%1.1f%%',    # 锲形块的数据标签格式
        startangle=70,    # 锲形块开始角度
        labels=labels,
        colors=cm.Blues(range(1, 300, 50)),
        explode=[0, 0, 0, 0, 0.05],    # 分裂距离
        textprops={'color': 'k',
                   'fontsize': 16},
       )

# ------------------------------------- 绘制条形图 -------------------------------------
sales = [98, 170, 119]
labels = ['', '', '']
colors = ['green', 'red', 'yellow']
xpos = 0 
bottom = 0

for j, _ in enumerate(sales):
    ration = sales[j]/sum(sales)
    ax2.bar(x=xpos,
            height=ration,
            width=0.5,
            bottom=bottom,
            color=colors[j]
           )
    ypos = bottom + ax2.patches[j].get_height() / 2
    bottom += ration    # 通过自增,实现堆积柱形的效果
    # 添加数据标签
    ax2.text(x=xpos,    # 标签文本的横轴坐标
             y=ypos,    # 竖轴坐标
             s='%s, %3.2f%%' % (labels[j], ax2.patches[j].get_height()),    # 标签的文本内容
             fontsize=16,
             ha='center',    # horizontal alignment
            )

ax2.axis('off')    # 关闭坐标轴

# 设置刻度范围
ax2.set_xlim(xmin=-0.6,
             xmax=1
       ) # ------------------------------------- 绘制连接线 ------------------------------------- # 获取锲形块的数据 theta1, theta2 = ax1.patches[-1].theta1, ax1.patches[-1].theta2 center, r = ax1.patches[-1].center, ax1.patches[-1].r bar_height = sum([item.get_height() for item in ax2.patches]) # 上连接线 x = r * np.cos(np.pi / 180 * theta2) + center[0] y = np.sin(np.pi / 180 * theta2) + center[1] con1 = ConnectionPatch(xyA=(-width / 2, bar_height), coordsA=ax2.transData, xyB=(x, y), coordsB=ax1.transData ) # 下连接线 x = r * np.cos(np.pi / 180 * theta1) + center[0] y = np.sin(np.pi / 180 * theta1) + center[1] con2 = ConnectionPatch(xyA=(-width / 2, 0), coordsA=ax2.transData, xyB=(x, y), coordsB=ax1.transData ) # 添加连接线 for con in [con1, con2]: con.set_color('gray') ax2.add_artist(con) con.set_linewidth(3) # 调整子区布局 fig.subplots_adjust(wspace=0) # 显示图形 plt.show()

图形:

 

 

 

posted @ 2020-06-13 22:13  赏尔  阅读(1343)  评论(0编辑  收藏  举报