python 使用 colormap 对条形图着色,添加数据标签

0、import

import numpy as np
import pandas as pd
import matplotlib as mplfrom matplotlib import pyplot as plt

1、读取数据

df = pd.read_csv('dataset/CHN_GDP(00-19).csv',
                 skiprows=3,
                 skipfooter=4,
                 encoding='utf-8',
                 engine='python'
                )

gdp = df[['地区', '2019年']].sort_values(by='2019年')
districts, gdp_2019 = zip(*gdp.values)

说明:此数据是我国 00年——19年各省 GDP 数据,下载说明可参看

https://www.cnblogs.com/shanger/p/13153014.html

 

2、绘制图形:

# 使图表正常显示中文
mpl.rcParams['font.sans-serif'] = 'SimHei'
# 使坐标轴刻度标签正常显示负号
mpl.rcParams['axes.unicode_minus'] = False

fig = plt.figure(figsize=(18, 88),
                 facecolor='cornsilk'
                )

cm_names = ['BuPu', 'cool', 'hot', 'jet', 'PiYG',
           'plasma', 'PuRd', 'rainbow', 'RdYlGn_r', 'spring']
axes = fig.subplots(nrows=(len(cm_names)+1)//2,
                    ncols=2,
                    sharey=True
                   )
                   
for ax, cm_name in zip(axes.ravel(), cm_names):
    cm = mpl.cm.get_cmap(cm_name)
    colors = cm(np.linspace(0, 1, 30))
    ax.barh(y=districts,
            width=gdp_2019,
            height=0.8,
            color=colors,
            edgecolor='green'
           )

    # 添加无指向型的注释文本
    for i, (district, gdp) in enumerate(zip(districts, gdp_2019)):
        x = gdp-8000 if gdp > 100000 else gdp - 100    # 三元表达式
        d = district[:3] if set(district).intersection('龙内') else district[:2]    # 三元表达式
nums
= str(int(gdp_2019[i])) text = ''.join([d, ' ', nums[:-3], ',', nums[-3:]]) ax.text(x, # 注释内容所在的横轴坐标 y=i, # 注释内容所在的纵轴坐标 s=text, # 注释的文本内容 size=15, # 字体大小 weight='bold', # 注释文本内容的字体粗细风格 color='navy' # 文本颜色
        
) ax.set_ylim(-0.7, 30), ax.set_title(label=cm_name, fontdict={'fontsize': 15,}     ) ax.xaxis.grid(color='grey', ls=':' )

  # 隐藏上边和右边的轴脊 ax.spines[
'top'].set_visible(False) ax.spines['right'].set_color('None') # 显示图形
plt.show();

图形:

 

 

 

posted @ 2020-06-16 23:55  赏尔  阅读(2152)  评论(0编辑  收藏  举报