一 迭代器

二 生成器

三 面向过程编程

四 三元表达式、列表推导式、生成器表达式

五 递归与二分法

六 匿名函数

七 内置函数

八 阶段性练习

九 作业

 

一 迭代器

一 迭代的概念

#迭代器即迭代的工具,那什么是迭代呢?
#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值
while True: #只是单纯地重复,因而不是迭代
    print('===>') 
    
l=[1,2,3]
count=0
while count < len(l): #迭代
    print(l[count])
    count+=1

二 为何要有迭代器?什么是可迭代对象?什么是迭代器对象?

#1、为何要有迭代器?
对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器

#2、什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下
'hello'.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{'a':1}.__iter__
{'a','b'}.__iter__
open('a.txt').__iter__

#3、什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象

文件类型是迭代器对象
open('a.txt').__iter__()
open('a.txt').__next__()


#4、注意:
迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象

三 迭代器对象的使用

dic={'a':1,'b':2,'c':3}
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身
iter_dic.__iter__() is iter_dic #True

print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
# print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志

#有了迭代器,我们就可以不依赖索引迭代取值了
iter_dic=dic.__iter__()
while 1:
    try:
        k=next(iter_dic)
        print(dic[k])
    except StopIteration:
        break
        
#这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环

四 for循环

#基于for循环,我们可以完全不再依赖索引去取值了
dic={'a':1,'b':2,'c':3}
for k in dic:
    print(dic[k])

#for循环的工作原理
#1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic
#2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码
#3: 重复过程2,直到捕捉到异常StopIteration,结束循环

五 迭代器的优缺点

#优点:
  - 提供一种统一的、不依赖于索引的迭代方式
  - 惰性计算,节省内存
#缺点:
  - 无法获取长度(只有在next完毕才知道到底有几个值)
  - 一次性的,只能往后走,不能往前退

二 生成器

一 什么是生成器

#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码

def func():
    print('====>first')
    yield 1
    print('====>second')
    yield 2
    print('====>third')
    yield 3
    print('====>end')

g=func()
print(g) #<generator object func at 0x0000000002184360>

二 生成表达式yield

#yield的功能:
#1、yield为我们提供了一种自定义迭代器对象的方法
#2、yield与return的区别1:yield可以返回多次值 #2:函数暂停与再继续的状态是由yield帮我们保存的

#
会抛异常的 def eater(name): print ("%s is ready to eat"%name) food=yield print ("%s is eating %s"%(name,food)) g=eater("alex") g.send(None)#####next(g) g.send("shit") #不会抛异常的 def eater(name): print ("%s is ready to eat"%name) while True: ############不断传值 food=yield print ("%s is eating %s"%(name,food)) g=eater("alex") #首先初始化 g.send(None)#####next(g) #然后e.send:1 从暂停的位置将值传给yield 2、与next一样(有顺序的) g.send("bones")

 

生成器就是迭代器

g.__iter__
g.__next__
#2、所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)

四 练习

1、自定义函数模拟range(1,7,2)

2、模拟管道,实现功能:tail -f access.log | grep '404'

#用一个生成器写
import time
#####tail功能
def tail(filepath):
    with open(filepath,"rb") as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.01)
####grep功能
def grep(lines,pattern):
    for i in lines:
        i=i.decode("utf-8")
        if pattern in i:
            print(i,end="")

lines=grep(tail("a.txt"),"404")
用一个生成器写tail -f a.txt |grep 404
#用两个生成器写tail -f a.txt |grep 404
import time
#####tail功能
def tail(filepath):
    with open(filepath,"rb") as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.01)
####grep功能
def grep(lines,pattern):
    for i in lines:
        i=i.decode("utf-8")
        if pattern in i:
            yield i
            
lines=grep(tail("a.txt"),"404")
for line in lines:
    print (line,end="")
用两个生成器写tail -f a.txt |grep 404

 

#题目一:
def my_range(start,stop,step=1):
    while start < stop:
        yield start
        start+=step

#执行函数得到生成器,本质就是迭代器
obj=my_range(1,7,2) #1  3  5
print(next(obj))
print(next(obj))
print(next(obj))
print(next(obj)) #StopIteration

#应用于for循环
for i in my_range(1,7,2):
    print(i)

#题目二
import time
def tail(filepath):
    with open(filepath,'rb') as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.2)

def grep(pattern,lines):
    for line in lines:
        line=line.decode('utf-8')
        if pattern in line:
            yield line

for line in grep('404',tail('access.log')):
    print(line,end='')

#测试
with open('access.log','a',encoding='utf-8') as f:
    f.write('出错啦404\n')

五 协程函数

了解:协程与yield

#yield关键字的另外一种使用形式:表达式形式的yield
def eater(name):
    print('%s 准备开始吃饭啦' %name)
    food_list=[]
    while True:
        food=yield food_list
        print('%s 吃了 %s' % (name,food))
        food_list.append(food)

g=eater('egon')
g.send(None) #对于表达式形式的yield,在使用时,第一次必须传None,g.send(None)等同于next(g)
g.send('蒸羊羔')
g.send('蒸鹿茸')
g.send('蒸熊掌')
g.send('烧素鸭')
g.close()
g.send('烧素鹅')
g.send('烧鹿尾')

六 练习
1、编写装饰器,实现初始化协程函数的功能

2、实现功能:grep  -rl  'python'  /etc

#题目一:
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper
@init
def eater(name):
    print('%s 准备开始吃饭啦' %name)
    food_list=[]
    while True:
        food=yield food_list
        print('%s 吃了 %s' % (name,food))
        food_list.append(food)

g=eater('egon')
g.send('蒸羊羔')

#题目二:
#注意:target.send(...)在拿到target的返回值后才算执行结束
import os
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper

@init
def search(target):
    while True:
        filepath=yield
        g=os.walk(filepath)
        for dirname,_,files in g:
            for file in files:
                abs_path=r'%s\%s' %(dirname,file)
                target.send(abs_path)
@init
def opener(target):
    while True:
        abs_path=yield
        with open(abs_path,'rb') as f:
            target.send((f,abs_path))
@init
def cat(target):
    while True:
        f,abs_path=yield
        for line in f:
            res=target.send((line,abs_path))
            if res:
                break
@init
def grep(pattern,target):
    tag=False
    while True:
        line,abs_path=yield tag
        tag=False
        if pattern.encode('utf-8') in line:
            target.send(abs_path)
            tag=True
@init
def printer():
    while True:
        abs_path=yield
        print(abs_path)


g=search(opener(cat(grep('你好',printer()))))
# g.send(r'E:\CMS\aaa\db')
g=search(opener(cat(grep('python',printer()))))
g.send(r'E:\CMS\aaa\db')
View Code

七 yield总结

#1、把函数做成迭代器
#2、对比return,可以返回多次值,可以挂起/保存函数的运行状态

三 面向过程编程

#1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

#2、定义
面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么

基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式

#3、优点:复杂的问题流程化,进而简单化

#4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身

#5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd

#6、举例
流水线1:
用户输入用户名、密码--->用户验证--->欢迎界面

流水线2:
用户输入sql--->sql解析--->执行功能

ps:函数的参数传入,是函数吃进去的食物,而函数return的返回值,是函数拉出来的结果,面向过程的思路就是,把程序的执行当做一串首尾相连的功能,该功能可以是函数的形式,然后一个函数吃,拉出的东西给另外一个函数吃,另外一个函数吃了再继续拉给下一个函数吃。。。

 

#grep -rl 'python' /etc
#补充:os.walk
# import os
# g=os.walk(r'D:\video\python20期\day4\a')
# # print(next(g))
# # print(next(g))
# # print(next(g))
# # print(next(g))
# for pardir,_,files in g:
#     for file in files:
#         abs_path=r'%s\\%s' %(pardir,file)
#         print(abs_path)


#分析二:[有小bug]
# 第一步:拿到一个文件夹下所有的文件的绝对路径
import os
def init(func):
    def inner(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return inner


@init
def search(target):  # r'D:\video\python20期\day4\a'
    while True:
        filepath = yield
        g = os.walk(filepath)
        for pardir, _, files in g:
            for file in files:
                abs_path = r'%s\%s' % (pardir, file)
                #把abs_path传给下一个阶段
                target.send(abs_path)

# 第二步:打开文件拿到文件对象f
@init
def opener(target):
    while True:
        abs_path = yield
        with open(abs_path,'rb') as f:
            #把(abs_path,f)传给下一个阶段
            target.send((abs_path,f))

#第三步:读取f的每一行内容
@init
def cat(target):
    while True:
        abs_path,f=yield
        for line in f:
            #把(abs_path,line)传给下一个阶段
            target.send((abs_path,line))

#第四步:判断'python' in line
@init
def grep(target,pattern):
    pattern = pattern.encode('utf-8')
    while True:
        abs_path,line=yield
        if pattern in line:
            #把abs_path传给下一个阶段
            target.send(abs_path)

#第五步:打印文件路径
@init
def printer():
    while True:
        abs_path=yield
        print('<%s>' %abs_path)

g=search(opener(cat(grep(printer(),'python')))) #'python' in b'xxxxx'
g.send(r'D:\video\python20期\day4\a')
grep -rl 'python' /etc[有小bug]
#分析二:
# 第一步:拿到一个文件夹下所有的文件的绝对路径
import os
def init(func):
    def inner(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return inner

@init
def search(target):  # r'D:\video\python20期\day4\a'
    while True:
        filepath = yield
        g = os.walk(filepath)
        for pardir, _, files in g:
            for file in files:
                abs_path = r'%s\%s' % (pardir, file)
                #把abs_path传给下一个阶段
                target.send(abs_path)

# 第二步:打开文件拿到文件对象f
@init
def opener(target):
    while True:
        abs_path = yield
        with open(abs_path,'rb') as f:
            #把(abs_path,f)传给下一个阶段
            target.send((abs_path,f))

#第三步:读取f的每一行内容
@init
def cat(target):
    while True:
        abs_path,f=yield
        for line in f:
            #把(abs_path,line)传给下一个阶段
            res=target.send((abs_path,line))
            #满足某种条件,break掉for循环
            if res:
                break

#第四步:判断'python' in line
@init
def grep(target,pattern):
    pattern = pattern.encode('utf-8')
    res=False
    while True:
        abs_path,line=yield res
        res=False
        if pattern in line:
            #把abs_path传给下一个阶段
            res=True
            target.send(abs_path)

#第五步:打印文件路径
@init
def printer():
    while True:
        abs_path=yield
        print('<%s>' %abs_path)

g=search(opener(cat(grep(printer(),'python')))) #'python' in b'xxxxx'
g.send(r'D:\video\python20期\day4\a')



#面向过程编程:核心是过程二字,过程指的就是解决问题的步骤,即先干什么后干什么。。。。
#基于该思路编写程序就好比设计一条流水线,是一种机械式的思维方式

#优点:复杂的问题流程化、进而简单化
#缺点:可扩展性差
grep -rl 'python' /etc

 

四 三元表达式、列表推导式、生成器表达式

一 三元表达式

name=input('姓名>>: ')
res='SB' if name == 'alex' else 'NB'
print(res)

二 列表推导式

#1、示例
egg_list=[]
for i in range(10):
    egg_list.append('鸡蛋%s' %i)

egg_list=['鸡蛋%s' %i for i in range(10)]

#2、语法
[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
]
类似于
res=[]
for item1 in iterable1:
    if condition1:
        for item2 in iterable2:
            if condition2
                ...
                for itemN in iterableN:
                    if conditionN:
                        res.append(expression)

#3、优点:方便,改变了编程习惯,可称之为声明式编程
i=[i for i in range(1,10,1) if i % 4 ==0]
print (i)
# [4, 8]

三 生成器表达式

#1、把列表推导式的[]换成()就是生成器表达式

#2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
>>> chicken=('鸡蛋%s' %i for i in range(5))
>>> chicken
<generator object <genexpr> at 0x10143f200>
>>> next(chicken)
'鸡蛋0'
>>> list(chicken) #因chicken可迭代,因而可以转成列表
['鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4',]

#3、优点:省内存,一次只产生一个值在内存中

四 声明式编程练习题

1、将names=['egon','alex_sb','wupeiqi','yuanhao']中的名字全部变大写

2、将names=['egon','alex_sb','wupeiqi','yuanhao']中以sb结尾的名字过滤掉,然后保存剩下的名字长度

3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)

4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)

5、思考题

with open('a.txt') as f:
    g=(len(line) for line in f)
print(sum(g)) #为何报错?

6、文件shopping.txt内容如下

mac,20000,3
lenovo,3000,10
tesla,1000000,10
chicken,200,1

求总共花了多少钱?

打印出所有商品的信息,格式为[{'name':'xxx','price':333,'count':3},...]

求单价大于10000的商品信息,格式同上

#题目一
names=['egon','alex_sb','wupeiqi','yuanhao']
names=[name.upper() for name in names]

#题目二
names=['egon','alex_sb','wupeiqi','yuanhao']
names=[len(name) for name in names if not name.endswith('sb')]

#题目三
with open('a.txt',encoding='utf-8') as f:
    print(max(len(line) for line in f))

#题目四
with open('a.txt', encoding='utf-8') as f:
    print(sum(len(line) for line in f))
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?

#题目五(略)

#题目六:每次必须重新打开文件或seek到文件开头,因为迭代完一次就结束了
with open('a.txt',encoding='utf-8') as f:
    info=[line.split() for line in f]
    cost=sum(float(unit_price)*int(count) for _,unit_price,count in info)
    print(cost)


with open('a.txt',encoding='utf-8') as f:
    info=[{
        'name': line.split()[0],
        'price': float(line.split()[1]),
        'count': int(line.split()[2]),
    } for line in f]
    print(info)


with open('a.txt',encoding='utf-8') as f:
    info=[{
        'name': line.split()[0],
        'price': float(line.split()[1]),
        'count': int(line.split()[2]),
    } for line in f if float(line.split()[1]) > 10000]
    print(info)
View Code

五 递归与二分法

一 递归调用的定义

#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用

二 递归分为两个阶段:递推,回溯

#图解。。。
# salary(5)=salary(4)+300
# salary(4)=salary(3)+300
# salary(3)=salary(2)+300
# salary(2)=salary(1)+300
# salary(1)=100
#
# salary(n)=salary(n-1)+300     n>1
# salary(1) =100                n=1

def salary(n):
    if n == 1:
        return 100
    return salary(n-1)+300

print(salary(5))

三 python中的递归效率低且没有尾递归优化

#python中的递归
python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,尾递归优化:http://egon09.blog.51cto.com/9161406/1842475
但是python又没有尾递归,且对递归层级做了限制

#总结递归的使用:
1. 必须有一个明确的结束条件

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

四 可以修改递归最大深度

import sys
sys.getrecursionlimit()
sys.setrecursionlimit(2000)
n=1
def test():
    global n
    print(n)
    n+=1
    test()

test()

虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归

五 二分法

想从一个按照从小到大排列的数字列表中找到指定的数字,遍历的效率太低,用二分法(算法的一种,算法是解决问题的方法)可以极大低缩小问题规模

l=[1,2,10,30,33,99,101,200,301,402] #从小到大排列的数字列表

def search(num,l):
    print(l)
    if len(l) > 0:
        mid=len(l)//2
        if num > l[mid]:
            #in the right
            l=l[mid+1:]
        elif num < l[mid]:
            #in the left
            l=l[:mid]
        else:
            print('find it')
            return
        search(num,l)
    else:
        #如果值不存在,则列表切为空
        print('not exists')
        return
search(100,l)

实现类似于in的效果
实现类似于in的效果
l=[1,2,10,30,33,99,101,200,301,402]

def search(num,l,start=0,stop=len(l)-1):
    if start <= stop:
        mid=start+(stop-start)//2
        print('start:[%s] stop:[%s] mid:[%s] mid_val:[%s]' %(start,stop,mid,l[mid]))
        if num > l[mid]:
            start=mid+1
        elif num < l[mid]:
            stop=mid-1
        else:
            print('find it',mid)
            return
        search(num,l,start,stop)
    else: #如果stop > start则意味着列表实际上已经全部切完,即切为空
        print('not exists')
        return

search(301,l)

实现类似于l.index(30)的效果
实现类似于l.index(30)的效果

六 匿名函数

一 什么是匿名函数?

匿名就是没有名字
def func(x,y,z=1):
    return x+y+z

匿名
lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字
func=lambda x,y,z=1:x+y+z 
func(1,2,3)
#让其有名字就没有意义

二 有名字的函数与匿名函数的对比

#有名函数与匿名函数的对比
有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能

匿名函数:一次性使用,随时随时定义

应用:max,min,sorted,map,reduce,filter
#max
salaries={
    "egon":3000,
    "alex":10000000,
    "wupeiqi":10000,
    "yuanhao":2000
}
# def func(k):
#     return salaries[k]
# most_salary=max(salaries,key=func )
# # most_salary=max(salaries,key=lambda k:salaries[k] )
# print (most_salary)



#sorted
# g=sorted(salaries,key=lambda x:salaries[x])
# print (list(g))

#map
# names=["alex","wupeiqi","yuanhao"]
# print (list(map(lambda name:"%s_sb"%name,names)))


#filter
# names=['alex_sb', 'wupeiqi_sb', 'yuanhao_sb',"egon"]
# print (list(filter(lambda name:name.endswith("sb"),names)))


#reduce

# from functools import reduce
# print (reduce(lambda x,y:x+y,range(101)))
内置函数与匿名函数

 

七 内置函数

#注意:内置函数id()可以返回一个对象的身份,返回值为整数。这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,最精准的还是以内存地址为准。is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型

#更多内置函数:https://docs.python.org/3/library/functions.html?highlight=built#ascii 
字典的运算:最小值,最大值,排序
salaries={
    'egon':3000,
    'alex':100000000,
    'wupeiqi':10000,
    'yuanhao':2000
}

迭代字典,取得是key,因而比较的是key的最大和最小值
>>> max(salaries)
'yuanhao'
>>> min(salaries)
'alex'

可以取values,来比较
>>> max(salaries.values())
>>> min(salaries.values())
但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
>>> max(salaries,key=lambda k:salary[k])
'alex'
>>> min(salaries,key=lambda k:salary[k])
'yuanhao'



也可以通过zip的方式实现
salaries_and_names=zip(salaries.values(),salaries.keys())

先比较值,值相同则比较键
>>> max(salaries_and_names)
(100000000, 'alex')


salaries_and_names是迭代器,因而只能访问一次
>>> min(salaries_and_names)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: min() arg is an empty sequence



sorted(iterable,key=None,reverse=False)

!!!lambda与内置函数结合使用!!!
!!!lambda与内置函数结合使用!!!
#1、语法
# eval(str,[,globasl[,locals]])
# exec(str,[,globasl[,locals]])

#2、区别
#示例一:
s='1+2+3'
print(eval(s)) #eval用来执行表达式,并返回表达式执行的结果
print(exec(s)) #exec用来执行语句,不会返回任何值
'''
None
'''

#示例二:
print(eval('1+2+x',{'x':3},{'x':30})) #返回33
print(exec('1+2+x',{'x':3},{'x':30})) #返回None

# print(eval('for i in range(10):print(i)')) #语法错误,eval不能执行表达式
print(exec('for i in range(10):print(i)'))

eval与exec
eval与exec

八 阶段性练习

1、文件内容如下,标题为:姓名,性别,年纪,薪资

egon male 18 3000
alex male 38 30000
wupeiqi female 28 20000
yuanhao female 28 10000

要求:
从文件中取出每一条记录放入列表中,
列表的每个元素都是{'name':'egon','sex':'male','age':18,'salary':3000}的形式

2 根据1得到的列表,取出薪资最高的人的信息
3 根据1得到的列表,取出最年轻的人的信息
4 根据1得到的列表,将每个人的信息中的名字映射成首字母大写的形式
5 根据1得到的列表,过滤掉名字以a开头的人的信息
6 使用递归打印斐波那契数列(前两个数的和得到第三个数,如:0 1 1 2 3 4 7...)

7 一个嵌套很多层的列表,如l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]],用递归取出所有的值

#1
with open('db.txt') as f:
    items=(line.split() for line in f)
    info=[{'name':name,'sex':sex,'age':age,'salary':salary} \
          for name,sex,age,salary in items]

print(info)
#2
print(max(info,key=lambda dic:dic['salary']))

#3
print(min(info,key=lambda dic:dic['age']))

# 4
info_new=map(lambda item:{'name':item['name'].capitalize(),
                          'sex':item['sex'],
                          'age':item['age'],
                          'salary':item['salary']},info)

print(list(info_new))

#5
g=filter(lambda item:item['name'].startswith('a'),info)
print(list(g))

#6
#非递归
def fib(n):
    a,b=0,1
    while a < n:
        print(a,end=' ')
        a,b=b,a+b
    print()

fib(10)
#递归
def fib(a,b,stop):
    if  a > stop:
        return
    print(a,end=' ')
    fib(b,a+b,stop)

fib(0,1,10)


#7
l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]]

def get(seq):
    for item in seq:
        if type(item) is list:
            get(item)
        else:
            print(item)
get(l)
View Code

九 作业

作业需求:

模拟实现一个ATM + 购物商城程序

  1. 额度 15000或自定义
  2. 实现购物商城,买东西加入 购物车,调用信用卡接口结账
  3. 可以提现,手续费5%
  4. 每月22号出账单,每月10号为还款日,过期未还,按欠款总额 万分之5 每日计息
  5. 支持多账户登录
  6. 支持账户间转账
  7. 记录每月日常消费流水
  8. 提供还款接口
  9. ATM记录操作日志 
  10. 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
  11. 用户认证用装饰器

示例代码 https://github.com/triaquae/py3_training/tree/master/atm 

简易流程图:https://www.processon.com/view/link/589eb841e4b0999184934329  

 

posted on 2017-12-28 14:05  浮槎北溟  阅读(237)  评论(0编辑  收藏  举报