STM32 F4 ADC DMA Temperature Sensor

STM32 F4 ADC DMA Temperature Sensor

Goal: detecting temperature variations using a temperature sensor, ADC with DMA and TIM3 as a trigger (ADC sampling frequency = TIM3 trigger frequency).

Note: Using TIM3 as a trigger is suited for monitoring temperature variations over time. However, this is an overkill for checking the absolute temperature once in a while; a software trigger would be a better option for that.

Description: 
The temperature sensor is connected to ADC1 input channel 16. TIM3 will trigger periodically (CK_CNT/(Autoreload value+1)) and ADC1 will sample the signal using the 3-cycle sample time. I will use the 12-bit resolution which results in the total of 15-cycle conversion time (including the 3-cycle sampling time). Now, the ADC clock frequency is 21MHz (driven by the prescaled APB2). The total conversion time is then 15/21Mhz = ~714 ns (~1.4Msps max). A DMA request is made after each conversion, which places the converted voltage value into a user-specified buffer. An end-of-conversion (EOC) flag generates an interrupt at the TIM3 trigger frequency (with a 15 cycle offset). TIM3 shouldn't trigger faster than the minimum conversion time (~714ns). In the case of measuring the temperature, sampling frequency is not an issue so I'll set up TIM3 to trigger, say, 2000 times per second.

ADC sampling frequency: 2kHz (max is 1.4MHz with a 21MHz ADC clock, 12-bit resolution and 3-cycle sampling).
ADC interrupt frequency: 2kHz (I will use ADC_IRQHandler() to toggle a pin to make sure my calculations are correct, the toggling frequency should be 1kHz).

Now, we end up with some value in the user-defied buffer (which the DMA writes into at the end of each conversion, 2000 times per second). The manual gives us a linear algebraic formula for calculating the temperature: Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25
VSENSE is the 12-bit value we get from ADC in our buffer (this is not the voltage value).
VSENSE should be multiplied by the ADC resolution step (Vref/4095) to get the actual voltage value.
V25 is 0.76V (voltage that sensor outputs at 25°C)
Avg_Slope is 0.0025V/°C (rate at which voltage changes when temperature changes by one degree Celsius)

According to the manual, the offset of the function can be up to 45°C due to process variation so it'll require some calibration if we plan to measure absolute temperature.
I will pass the ADC values through an averaging filter to improve the variation accuracy. The filter also removes highest and lowest samples (can add a more sophisticated mechanism here).

#include <stm32f4xx.h>
#include "mcu_init.h"



//====================================================================================
//   Global variables for temperature measurements
//====================================================================================
volatile uint16_t ADC_Raw[NS] = {0};       // Updated 2000 times per second by DMA
uint16_t Sample_ADC_Raw[NS]   = {0};       // Non-volatile copy of ADC_Raw[NS]
uint32_t ADC_Average          = 0;         // Average of the samples
float Temp                    = 0;         // Temporary register
float Temp_Celsius            = 0;         // Temperature in Celsius
float Calibration_Value       = 11.0;      // For measuring absolute temperature



//====================================================================================
//   Functions used in this module
//====================================================================================
void Sort_values(uint16_t [], uint8_t);
float Get_Temperature(void);



//====================================================================================
//   main function
//====================================================================================
int main()
{ 
 
  //ADC_Interrupt_Config();                  // Indirectly testing my calculations
  //GPIOD_Config();                          // Indirectly testing my calculations
  TIM3_Config();
  ADC_Config(); 
 
  while (1)
  {
    Temp_Celsius = Get_Temperature();        // Monitoring Temp_Celsius in debug mode
  
    // Set a threshold value, light up LEDs if Temp_Celsius goes above or below it.
    // I put it in the freezer to test :)
  
  }
 
}



//====================================================================================
//   Description: Averaging samples from ADC, calculating temperature in Celsius
//====================================================================================
float Get_Temperature(void)
{
  uint8_t i;
 
  for(i = 0; i < NS; i++)
  {
    Sample_ADC_Raw[i] = ADC_Raw[i];
  }
  
  Sort_values(Sample_ADC_Raw, NS);
  
  ADC_Average = 0;
  for(i = SR/2; i < NS-SR/2; i++)
  {
    ADC_Average += Sample_ADC_Raw[i];
  }
  ADC_Average /= (NS-SR);
    
  Temp += ADC_Average;
  Temp *= 3;
  Temp /= 4095;
  Temp -= (float)0.76;
  Temp /= (float)0.0025;
  Temp += (float)25.0;
  Temp -= Calibration_Value;
  
  return Temp;
}



//====================================================================================
// Description: Bubble sort min to max 
//====================================================================================
void Sort_values(uint16_t A[], uint8_t L)
{
  uint8_t i = 0;
  uint8_t status = 1;
 
  while(status == 1)
  {
    status = 0;
    for(i = 0; i < L-1; i++)
    {
      if (A[i] > A[i+1])
      {
        A[i]^=A[i+1];
        A[i+1]^=A[i];
        A[i]^=A[i+1];
        status = 1;    
      }
    }
  }
}



void ADC_IRQHandler(void) // (for testing)
{
  GPIO_ToggleBits(GPIOD, GPIO_Pin_9);
  ADC_ClearITPendingBit(ADC1, ADC_IT_EOC);
}

 

#ifndef __MCU_INIT_H
#define __MCU_INIT_H

#include <stm32f4xx.h>

#define NS       10         // Number of samples to get from ADC
#define SR       4          // Samples removed after sorting, 4=(2 highest & 2 lowest)
#define ADC1_RDR 0x4001204C // ADC1 Regular Data Register (read only)

extern volatile uint16_t ADC_Raw[NS];   // DMA writes ADC values into this buffer



//====================================================================================
//   Functions used for measuring temperature variations
//====================================================================================
void GPIOD_Config(void);            // Indirectly testing my calculations
void ADC_Interrupt_Config(void);    // Indirectly testing my calculations
void TIM3_Config(void);
void ADC_Config(void);



#endif // __MCU_INIT_H

 

 

#include "mcu_init.h"
#include <stm32f4xx.h>



//====================================================================================
//   Configuring TIM3 to trigger at 2kHz which is the ADC sampling rate
//====================================================================================
void TIM3_Config(void)
{
  TIM_TimeBaseInitTypeDef TIM3_TimeBase;

  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
 
  TIM_TimeBaseStructInit(&TIM3_TimeBase); 
  TIM3_TimeBase.TIM_Period        = (uint16_t)49; // Trigger = CK_CNT/(49+1) = 2kHz
  TIM3_TimeBase.TIM_Prescaler     = 420;          // CK_CNT = 42MHz/420 = 100kHz
  TIM3_TimeBase.TIM_ClockDivision = 0;
  TIM3_TimeBase.TIM_CounterMode   = TIM_CounterMode_Up;  
  TIM_TimeBaseInit(TIM3, &TIM3_TimeBase);
  TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);

  TIM_Cmd(TIM3, ENABLE);
}



//====================================================================================
//   Configuring GPIO PD9 (for testing)
//====================================================================================
void GPIOD_Config(void)
{
  GPIO_InitTypeDef gpio_D;
 
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
 
  gpio_D.GPIO_Mode  = GPIO_Mode_OUT;
  gpio_D.GPIO_OType = GPIO_OType_PP;
  gpio_D.GPIO_Pin   = GPIO_Pin_9;
  gpio_D.GPIO_PuPd  = GPIO_PuPd_NOPULL;
  gpio_D.GPIO_Speed = GPIO_Medium_Speed;
  GPIO_Init(GPIOD, &gpio_D);
 
}



//====================================================================================
//   Configuring ADC global interrupt (for testing)
//====================================================================================
void ADC_Interrupt_Config(void)
{
  NVIC_InitTypeDef NVIC_ADC1;
 
  NVIC_ADC1.NVIC_IRQChannel    = ADC_IRQn;
  NVIC_ADC1.NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_ADC1);
}



//====================================================================================
//   Configuring ADC with DMA
//====================================================================================
void ADC_Config(void)
{
  ADC_InitTypeDef       ADC_INIT;
  ADC_CommonInitTypeDef ADC_COMMON;
  DMA_InitTypeDef       DMA_INIT;

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

  DMA_INIT.DMA_Channel = DMA_Channel_0;  
  DMA_INIT.DMA_PeripheralBaseAddr = (uint32_t)ADC1_RDR;
  DMA_INIT.DMA_Memory0BaseAddr    = (uint32_t)&ADC_Raw[0]; 
  DMA_INIT.DMA_DIR                = DMA_DIR_PeripheralToMemory;
  DMA_INIT.DMA_BufferSize         = NS;
  DMA_INIT.DMA_PeripheralInc      = DMA_PeripheralInc_Disable;
  DMA_INIT.DMA_MemoryInc          = DMA_MemoryInc_Enable;
  DMA_INIT.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
  DMA_INIT.DMA_MemoryDataSize     = DMA_MemoryDataSize_HalfWord;
  DMA_INIT.DMA_Mode               = DMA_Mode_Circular;
  DMA_INIT.DMA_Priority           = DMA_Priority_High;
  DMA_INIT.DMA_FIFOMode           = DMA_FIFOMode_Disable;         
  DMA_INIT.DMA_FIFOThreshold      = DMA_FIFOThreshold_HalfFull;
  DMA_INIT.DMA_MemoryBurst        = DMA_MemoryBurst_Single;
  DMA_INIT.DMA_PeripheralBurst    = DMA_PeripheralBurst_Single;
  DMA_Init(DMA2_Stream4, &DMA_INIT);
  DMA_Cmd(DMA2_Stream4, ENABLE);

  ADC_COMMON.ADC_Mode             = ADC_Mode_Independent;
  ADC_COMMON.ADC_Prescaler        = ADC_Prescaler_Div2;
  ADC_COMMON.ADC_DMAAccessMode    = ADC_DMAAccessMode_Disabled;
  ADC_COMMON.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
  ADC_CommonInit(&ADC_COMMON);

  ADC_INIT.ADC_Resolution           = ADC_Resolution_12b;
  ADC_INIT.ADC_ScanConvMode         = DISABLE;
  ADC_INIT.ADC_ContinuousConvMode   = DISABLE; // ENABLE for max ADC sampling frequency
  ADC_INIT.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
  ADC_INIT.ADC_ExternalTrigConv     = ADC_ExternalTrigConv_T3_TRGO;
  ADC_INIT.ADC_DataAlign            = ADC_DataAlign_Right;
  ADC_INIT.ADC_NbrOfConversion      = 1;
  ADC_Init(ADC1, &ADC_INIT);

  ADC_RegularChannelConfig(ADC1, ADC_Channel_16, 1, ADC_SampleTime_3Cycles);
  ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
  ADC_ITConfig(ADC1, ADC_IT_EOC, ENABLE);      // (for testing)
  ADC_DMACmd(ADC1, ENABLE);
  ADC_Cmd(ADC1, ENABLE);
  ADC_TempSensorVrefintCmd(ENABLE);
}

 

Summary: 

To work with other sensors, follow these steps:
 - choose the ADC channel
 - choose the sampling rate
 - adjust the TIMx trigger frequency
 - configure DMA

A software trigger is suited for reading sensor's values on demand (turn off ADC when not using).

 

posted @ 2015-09-08 23:23  IAmAProgrammer  阅读(1742)  评论(0编辑  收藏  举报