Cortex-M3 and Cortex-M4 Memory Organization

http://www.mikroe.com/download/eng/documents/compilers/mikropascal/pro/arm/help/memory_organization.htm

The Cortex-M3 and Cortex-M4 have a predefined memory map. This allows the built-in peripherals, such as the interrupt controller and the debug components, to be accessed by simple memory access instructions. 
Thus, most system features are accessible in program code. The predefined memory map also allows the Cortex-M3 processor to be highly optimized for speed and ease of integration in system-on-a-chip (SoC) designs.

Overall, the 4 GB memory space can be divided into ranges as shown in picture below. The Cortex-M3 design has an internal bus infrastructure optimized for this memory usage.

A graphical representation of the ARM memory is shown in picture below :

 

The ARM Cortex-M3 memory is divided into following regions :

  • System - .
  • Private Peripheral Bus - External - Provides access to :
    • the Trace Port Interface Unit (TPIU),
    • the Embedded Trace Macrocell (ETM),
    • the ROM table,
    • implementation-specific areas of the PPB memory map.
  • Private Peripheral Bus - External - Provides access to :
    • the Instrumentation Trace Macrocell (ITM),
    • the Data Watchpoint and Trace (DWT),
    • the Flashpatch and Breakpoint (FPB),
    • the System Control Space (SCS), including the MPU and the Nested Vectored Interrupt Controller (NVIC).
  • External Device - This region is used for external device memory.
  • External RAM - This region is used for data.
  • Peripheral - This region includes bit band and bit band alias areas.
    • Peripheral Bit-band alias - Direct accesses to this memory range behave as peripheral memory accesses, but this region is also bit addressable through bit-band alias.
    • Peripheral bit-band region - Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write.
  • SRAM - This executable region is for data storage. Code can also be stored here. This region includes bit band and bit band alias areas.
    • SRAM Bit-band alias - Direct accesses to this memory range behave as SRAM memory accesses, but this region is also bit addressable through bit-band alias.
    • SRAM bit-band region - Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write.
  • Code - This executable region is for program code. Data can also be stored here.

 

Memory Maps

The Cortex-M3 processor has a fixed memory map.

Some of the memory locations are allocated for private peripherals such as debugging components.

1. Fetch Patch and BreakPoint Unit (FPB)

2. Data WatchPoint and Trace Unit (DWT)

3. Instrumentation Trace Macrocell (ITM)

4. Embedded Trace Macrocell (ETM)

5. Trace Port Interface Unit (TPIU)

6. ROM Table

The Cortex-M3 processor has a total of 4 GB of address space.

 

SRAM: 0.5 GB.        

The SRAM memory range is for connecting internal SRAM.

On-chip peripherals: 0.5 GB

supports bit-band alias and is accessed via the system bus interface.

External RAM: 1 GB.

Program execution is allowed.

External devices: 1 GB.

Program execution is not allowed.

System-level components + internal private peripheral buses + external private peripheral bus + vendor-specific system peripherals: 0.5 GB.

 

Private peripheral bus:

1. AHB private peripheral bus, for Cortex-M3 internal AHB peripherals only.

2. APB private peripheral bus, for Cortex-M3 internal APB devices as well as external peripherals.

Bit-Band Operations

Bit-band operation support allows a single load/store (read/write) operation to access a single data bit.

Bit-band regions:

1. The first 1 MB of the SRAM region

2. The first 1 MB of the peripheral region

They can be accessed via a separate memory region called the bit-band alias.

 

To set bit 2 in word data in address 0x20000000

Write:

1. Without Bit-Band:

LDR R0, =0x20000000 ; Setup address LDR R1, [R0] ;

Read ORR.W R1, #0x4 ; Modify bit

STR R1, [R0] ; Write back result

 

 

2. With Bit-Band:

LDR R0, =0x22000008 ; Setup address

MOV R1, #1 ; Setup data

STR R1, [R0] ; Write

 

Read:

1. Without Bit-Band:

LDR R0, =0x20000000 ; Setup address

LDR R1, [R0] ; Read

UBFX.W R1, R1, #2, #1 ; Extract bit[2]

 

 

2. With Bit-Band:

LDR R0, =0x22000008 ; Setup address

LDR R1, [R0] ; Read

 

For read operations, the word is read and the chosen bit location is shifted to the LSB of the read return data.

For write operations, the written bit data is shifted to the required bit position, and a READ-MODIFY-WRITE is performed.

 

 

 

posted @   IAmAProgrammer  阅读(1716)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
历史上的今天:
2012-09-13 ARM 条件码 分支指令 比较指令 程序状态寄存器(CPSR)
点击右上角即可分享
微信分享提示