OpenCV 3.2 Tracking 物体跟踪

跟踪就是在连续视频帧中定位物体,通常的跟踪算法包括以下几类:

1. Dense Optical Flow 稠密光流

2. Sparse Optical Flow 稀疏光流 最典型的如KLT算法(Kanade-Lucas-Tomshi)

3. Kalman Filter

4. Meanshift and Camshift

5. Multiple object tracking

需要注意跟踪和识别的区别,通常来说跟踪可以比识别快很多,且跟踪失败了可以找回来。

OpenCV 3以后实现了很多追踪算法,都实现在contrib模块中,安装参考

下面code实现了跟踪笔记本摄像头画面中的固定区域物体,可以选用OpenCV实现的算法

#include <opencv2/opencv.hpp>
#include <opencv2/tracking.hpp>

using namespace std;
using namespace cv;

int main(int argc, char** argv){
  // can change to BOOSTING, MIL, KCF (OpenCV 3.1), TLD, MEDIANFLOW, or GOTURN (OpenCV 3.2)
  Ptr<Tracker> tracker = Tracker::create("MEDIANFLOW"); 
  VideoCapture video(0);
  if(!video.isOpened()){
    cerr << "cannot read video!" << endl;
    return -1;
  }
  Mat frame;
  video.read(frame);
  Rect2d box(270, 120, 180, 260);
  tracker->init(frame, box);
  while(video.read(frame)){
    tracker->update(frame, box);
    rectangle(frame, box, Scalar(255, 0, 0), 2, 1);
    imshow("Tracking", frame);
    int k=waitKey(1);
    if(k==27) break;
  }
}

 着重了解效果较好的KCF(Kernelized Correlation Filters)和经典的KLT算法

posted @ 2017-03-20 22:05  徐尚  阅读(23432)  评论(1编辑  收藏  举报