金字塔Lucas-Kanande光流算法实现
// Lucas-Kanade method Optical Flow in OpenCV // BJTShang, 2016-12-13 #include <cv.h> #include <cxcore.h> #include <highgui.h> const int MAX_CORNERS = 500; int main(int argc, char** argv){ IplImage* imgA = cvLoadImage("/home/bjtshang/cpp_ws/opencv/data/OpticalFlow0.jpg", CV_LOAD_IMAGE_GRAYSCALE); IplImage* imgB = cvLoadImage("/home/bjtshang/cpp_ws/opencv/data/OpticalFlow1.jpg", CV_LOAD_IMAGE_GRAYSCALE); // image to show the optical flow vectors IplImage* imgC = cvLoadImage("/home/bjtshang/Desktop/OpticalFlow1.jpg", CV_LOAD_IMAGE_UNCHANGED); CvSize img_size = cvGetSize(imgA); CvSize win_size = cvSize(50, 50); int corner_count = MAX_CORNERS; // get the features (detect corners) need to be tracked IplImage* imgEig = cvCreateImage(img_size, IPL_DEPTH_32F, 1); IplImage* imgTmp = cvCreateImage(img_size, IPL_DEPTH_32F, 1); CvPoint2D32f* cornersA = new CvPoint2D32f[corner_count]; cvGoodFeaturesToTrack(imgA, imgEig, imgTmp, cornersA, &corner_count, 0.02, 8.0, 0, 3, 0, 0.04); // find sub-pixel corners cvFindCornerSubPix(imgA, cornersA, corner_count, win_size, cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.1)); char features_found[MAX_CORNERS]; float feature_errors[MAX_CORNERS]; CvSize pyr_size = cvSize(imgA->width+8, imgB->height/3); IplImage* pyrA = cvCreateImage(pyr_size, IPL_DEPTH_32F, 1); IplImage* pyrB = cvCreateImage(pyr_size, IPL_DEPTH_32F, 1); CvPoint2D32f* cornersB = new CvPoint2D32f[MAX_CORNERS]; cvCalcOpticalFlowPyrLK(imgA, imgB, pyrA, pyrB, cornersA, cornersB, corner_count, win_size, 10, features_found, feature_errors, cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.1), 0 ); for(int i=0; i<corner_count; i++){ if(features_found[i]==0 || feature_errors[i] > 550){ printf("Error is: %f\n", feature_errors[i]); continue; } //printf("Got it\n"); CvPoint p1 = cvPoint(cvRound(cornersA[i].x), cvRound(cornersA[i].y)); CvPoint p2 = cvPoint(cvRound(cornersB[i].x), cvRound(cornersB[i].y)); cvLine(imgC, p1, p2, CV_RGB(255, 0, 0), 1); } cvNamedWindow("imgA", 0); cvNamedWindow("imgB", 0); cvNamedWindow("Optical_flow", 0); cvShowImage("imgA", imgA); cvShowImage("imgB", imgB); cvShowImage("Optical_flow", imgC); cvWaitKey(0); return 0; }