loj #136
最小瓶颈路
做最小生成树是进行特判即可
时间复杂度 n * k
#include <bits/stdc++.h>
const int N = 1010, M = 1e5 + 10;
struct Node {
int u, v, w;
bool operator < (const Node a) const {return w < a.w;}
} E[M];
int X[N], Y[N];
int n, m, k;
int fa[N];
int Answer[N];
int Get(int x) {return x == fa[x] ? x : fa[x] = Get(fa[x]);}
int main() {
std:: cin >> n >> m >> k;
for(int i = 1; i <= m; i ++) std:: cin >> E[i].u >> E[i].v >> E[i].w;
for(int i = 1; i <= k; i ++) std:: cin >> X[i] >> Y[i];
std:: sort(E + 1, E + m + 1);
for(int i = 1; i <= n; i ++) fa[i] = i;
int js = 0;
for(int i = 1; i <= m && js < n - 1; i ++) {
int fax = Get(E[i].u), fay = Get(E[i].v);
if(fax == fay) continue;
for(int j = 1; j <= k; j ++) {
if(Answer[j]) continue;
int fa1 = Get(X[j]), fa2 = Get(Y[j]);
if((fa1 == fax && fa2 == fay) || (fa1 == fay && fa2 == fax)) {
Answer[j] = E[i].w;
}
}
fa[fax] = fay;
js ++;
}
for(int i = 1; i <= k; i ++) {
std:: cout << (Answer[i] == 0 ? -1 : Answer[i]) << "\n";
}
return 0;
}