[Luogu] 高斯消元法
https://www.luogu.org/problemnew/show/P3389
模拟,消元
#include <bits/stdc++.h> #define DB double const int N = 110; const DB eps = 1e-7; DB A[N][N], Answer[N]; int n; DB read() {DB a; scanf("%lf", &a); return a;} int main() { std:: cin >> n; for(int i = 1; i <= n; i ++) for(int j = 1; j <= n + 1; j ++) A[i][j] = read(); for(int i = 1; i <= n; i ++) { int r = i; for(int j = i + 1; j <= n; j ++) if(abs(A[j][i]) > abs(A[r][i])) r = i; if(abs(A[r][i]) <= eps) {std:: cout << "No Solution"; return 0;} if(i != r) std:: swap(A[i], A[r]); DB now = A[i][i]; for(int j = i; j <= n + 1; j ++) A[i][j] /= now; for(int j = i + 1; j <= n; j ++) { DB Now = A[j][i]; for(int k = i; k <= n + 1; k ++) A[j][k] -= Now * A[i][k]; } } Answer[n] = A[n][n + 1]; for(int i = n - 1; i >= 1; i --) { Answer[i] = A[i][n + 1]; for(int j = n; j > n - (n - i); j --) Answer[i] -= Answer[j] * A[i][j]; } for(int i = 1; i <= n; i ++) printf("%.2lf\n", Answer[i]); return 0; } /* 3 1 -2 3 6 4 -5 6 12 7 -8 10 21 */