[Loj] 数列分块入门 1 - 9

数列分块入门 1

https://loj.ac/problem/6277

区间加 + 单点查询

#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;
const int N = 5e4 + 10;

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

int A[N], Add[N], bel[N];
int n, block, cnt;

void Sec_G(int x, int y, int w) {
    if(bel[x] == bel[y]) for(int i = x; i <= y; i ++) A[i] += w;
    else {
        for(int i = x; i <= bel[x] * block; i ++) A[i] += w;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] += w; 
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) Add[i] += w;
}

int main() {
    n = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) A[i] = read();
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1;
    if(n % block) cnt = n / block + 1;
    else cnt = n / block;
    int T = n;
    while(T --) {
        int opt = read(), l = read(), r = read(), c = read();
        if(!opt) Sec_G(l, r, c);
        else cout << A[r] + Add[bel[r]] << endl;
    }
    return 0;
}

数列分块入门 2

https://loj.ac/problem/6278

区间加法,询问区间内小于某个值 x 的元素个数

用B[]记录A[], B[]数组中为排好序的A[]的映射

那么每次可以对每一块进行二分查找

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> 

using namespace std;
const int N = 5e4 + 10;

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

int A[N], B[N], Add[N], bel[N];
int n, block, cnt;

void Work_sort(int x) {
    int l = (x - 1) * block + 1, r = min(l + block - 1, n);
    for(int i = l; i <= r; i ++) B[i] = A[i];
    sort(B + l, B + r + 1);
}

void Sec_G(int x, int y, int w) {
    if(bel[x] == bel[y]) {
        for(int i = x; i <= y; i ++) A[i] += w;
        Work_sort(bel[x]);
    }
    else {
        for(int i = x; i <= bel[x] * block; i ++) A[i] += w; Work_sort(bel[x]);
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] += w; Work_sort(bel[y]);
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) Add[i] += w;
}

inline int Calc(int x, int w) {
    int l = (x - 1) * block + 1, r = min(l + block - 1, n), ret = 0;
    while(l <= r) {
        int mid = (l + r) >> 1;
        if(B[mid] + Add[x] < w) ret = mid, l = mid + 1;
        else r = mid - 1;
    }
    return ret ? (ret - (x - 1) * block) : 0;
}

inline int Sec_A(int x, int y, int w) {
    int ret(0);
    if(bel[x] == bel[y]) {
        for(int i = x; i <= y; i ++) if(A[i] + Add[bel[x]] < w) ret ++;
        return ret;
    } else {
        for(int i = x; i <= bel[x] * block; i ++) if(A[i] + Add[bel[x]] < w) ret ++;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) 
        if(A[i] + Add[bel[y]] < w) 
        ret ++;
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) 
    ret += Calc(i, w);
    return ret;
}

int main() {
    n = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) A[i] = read();
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1;
    if(n % block) cnt = n / block + 1;
    else cnt = n / block;
    for(int i = 1; i <= cnt; i ++) Work_sort(i);
    int T = n;
    while(T --) {
        int opt = read(), l = read(), r = read(), c = read();
        if(!opt) Sec_G(l, r, c);
        else cout << Sec_A(l, r, c * c) << "\n";
    }
    return 0;
}

数列分块入门 3

https://loj.ac/problem/6279

区间加法,询问区间内小于某个值 x 的前驱

与2类似,二分查找

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> 

using namespace std;
const int N = 1e5 + 10;
const int oo = 999999999;

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

int A[N], B[N] = {-1}, Add[N], bel[N];
int n, block, cnt;

void Work_sort(int x) {
    int l = (x - 1) * block + 1, r = min(l + block - 1, n);
    for(int i = l; i <= r; i ++) B[i] = A[i];
    sort(B + l, B + r + 1);
}

void Sec_G(int x, int y, int w) {
    if(bel[x] == bel[y]) {
        for(int i = x; i <= y; i ++) A[i] += w;
        Work_sort(bel[x]);
    }
    else {
        for(int i = x; i <= bel[x] * block; i ++) A[i] += w; Work_sort(bel[x]);
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] += w; Work_sort(bel[y]);
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) Add[i] += w;
}

inline int Calc(int x, int w) {
    int l = (x - 1) * block + 1, r = min(l + block - 1, n), ret = 0;
    while(l <= r) {
        int mid = (l + r) >> 1;
        if(B[mid] + Add[x] < w) ret = mid, l = mid + 1;
        else r = mid - 1;
    }
    return B[ret] + Add[x];
}

inline int Sec_A(int x, int y, int w) {
    int ret = -1;
    if(bel[x] == bel[y]) {
        for(int i = x; i <= y; i ++) if(A[i] + Add[bel[x]] < w && A[i] + Add[bel[x]] > ret) ret = A[i] + Add[bel[x]];
        return ret;
    } else {
        for(int i = x; i <= bel[x] * block; i ++) 
        if(A[i] + Add[bel[x]] < w && A[i] + Add[bel[x]] > ret) ret = A[i] + Add[bel[x]];
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) 
        if(A[i] + Add[bel[y]] < w && A[i] + Add[bel[y]] > ret) ret = A[i] + Add[bel[y]]; 
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) {
        int imp = Calc(i, w);
        if(imp < w && imp > ret) ret = imp;
    }
    return ret;
}

int main() {
    n = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) A[i] = read();
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1;
    if(n % block) cnt = n / block + 1;
    else cnt = n / block;
    for(int i = 1; i <= cnt; i ++) Work_sort(i);
    int T = n;
    while(T --) {
        int opt = read(), l = read(), r = read(), c = read();
        if(!opt) Sec_G(l, r, c);
        else cout << Sec_A(l, r, c) << "\n";
    }
    return 0;
}

数列分块入门 4

区间加法,区间求和

https://loj.ac/problem/6280

没什么好说的

#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;
const int N = 5e4 + 10;

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

#define LL long long

LL A[N], Add[N], bel[N], W[N];
int n, block, cnt, Mod;

void Sec_G(int x, int y, int w) {
    if(bel[x] == bel[y]) for(int i = x; i <= y; i ++) A[i] += w, W[bel[x]] += w;
    else {
        for(int i = x; i <= bel[x] * block; i ++) A[i] += w, W[bel[x]] += w;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] += w, W[bel[y]] += w;
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) Add[i] += w, W[i] += w * block;
}

inline int Sec_A(int x, int y) {
    LL ret = 0;
    if(bel[x] == bel[y]) 
        for(int i = x; i <= y; i ++)
            ret += (A[i] + Add[bel[x]]) % Mod;
    else {
        for(int i = x; i <= bel[x] * block; i ++) ret += (A[i] + Add[bel[x]]) % Mod;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) ret += (A[i] + Add[bel[y]]) % Mod;
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) ret += W[i] % Mod;
    return ret% Mod;
}

int main() {
    n = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) A[i] = read();
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1, W[bel[i]] += A[i];
    if(n % block) cnt = n / block + 1;
    else cnt = n / block;
    int T = n;
    while(T --) {
        int opt = read(), l = read(), r = read(), c = read(); Mod = c + 1;
        if(!opt) Sec_G(l, r, c);
        else cout << Sec_A(l, r) << endl;
    }
    return 0;
}

数列分块入门 5

区间开方,区间求和

一个数(合理)开几次根后就是0/1了

因此,只需记录每块的最大值,如果最大值是0/1就没必要开根

#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;
const int N = 5e4 + 10;

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

#define LL long long

LL A[N], Add[N], bel[N], W[N], Max[N];
int n, block, cnt, Mod;

inline void Sec_G(int x, int y) {
    if(bel[x] == bel[y]) {
        if(!Max[bel[x]]) return ;
        if(Max[bel[x]] == 1) return ;
        for(int i = x; i <= y; i ++) {
            int C = A[i] - (int) sqrt(A[i]);
            W[bel[x]] -= C; A[i] = (int) sqrt(A[i]);
        }
        LL Max_A = 0;
        for(int i = (bel[x] - 1) * block + 1; i <= bel[x] * block; i ++) Max_A = max(Max_A, A[i]);
        Max[bel[x]] = Max_A;
        return ;
    }
    else {
        if(Max[bel[x]] && Max[bel[x]] != 1) {
            for(int i = x; i <= bel[x] * block; i ++) {
                int C = A[i] - (int) sqrt(A[i]);
                W[bel[x]] -= C;
                A[i] = (int) sqrt(A[i]);
            }
            LL Max_A = 0;
            for(int i = (bel[x] - 1) * block + 1; i <= bel[x] * block; i ++) Max_A = max(Max_A, A[i]);
            Max[bel[x]] = Max_A;
        }
        if(Max[bel[y]] && Max[bel[y]] != 1) {
            for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) {
                int C = A[i] - (int) sqrt(A[i]);
                W[bel[y]] -= C;
                A[i] = (int) sqrt(A[i]);
            }
            LL Max_A = 0;
            for(int i = (bel[y] - 1) * block + 1; i <= bel[y] * block; i ++) Max_A = max(Max_A, A[i]);
            Max[bel[y]] = Max_A;
        }    
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) {
        if(!Max[i] || Max[i] == 1) continue ;
        LL Max_A = 0;
        for(int j = (i - 1) * block + 1; j <= i * block; j ++) {
            int C = A[j] - (int) sqrt(A[j]);
            W[i] -= C;
            A[j] = (int) sqrt(A[j]);
            Max_A = max(Max_A, A[j]);
        }
        Max[i] = Max_A;
    }
}

inline int Sec_A(int x, int y) {
    LL ret = 0;
    if(bel[x] == bel[y] && Max[bel[x]]) for(int i = x; i <= y; i ++) ret += A[i];
    else {
        for(int i = x; i <= bel[x] * block && Max[bel[x]]; i ++) ret += A[i];
        for(int i = (bel[y] - 1) * block + 1; i <= y && Max[bel[y]]; i ++) ret += A[i];
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) ret += W[i];
    return ret;
}

int main() {
    n = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) A[i] = read();
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1, W[bel[i]] += A[i], Max[bel[i]] = max(Max[bel[i]], A[i]);
    int T = n;
    while(T --) {
        int opt = read(), l = read(), r = read(), c = read();
        if(!opt) Sec_G(l, r);
        else cout << Sec_A(l, r) << "\n";
    }
    return 0;
}

数列分块入门 6

https://loj.ac/problem/6282

单点插入,单点询问

数据随机,分块,对于每一块开动态数组,插入 + 查询比较容易实现

如果数据不随机,就有可能加到同一块中的数较多,影响效率

这样可以进行一定的插入操作之后重新分块

#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>

using namespace std;
const int N = 1e5 + 10;

int A[N << 1], n;
vector <int> Vec[350];
int block, bel[N];

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

inline void Ins(int x, int a) {
    int now_size(0), Whi;
    for(int i = 1; ; i ++) {
        int Size = Vec[i].size();
        now_size += Size;
        if(now_size >= x) {
            Whi = i;
            x -= (now_size - Size);
            break;
        }
    }
    Vec[Whi].insert(Vec[Whi].begin() + x - 1, a);
}

inline int Poi_A(int x) {
    int Whi_, now_size(0);
    for(int i = 1; ; i ++) {
        int Size = Vec[i].size();
        now_size += Size;
        if(now_size >= x) {
            int iii = x - (now_size - Size);
            return Vec[i][iii - 1];
        }
    }
}

int main() {
    n = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) A[i] = read();
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1;
    for(int i = 1; i <= n; i ++) Vec[bel[i]].push_back(A[i]);
    int T = n;

    while(T --) {
        int opt = read(), l = read(), r = read(), c = read();
        if(!opt) Ins(l, r);
        else cout << Poi_A(r) << endl;
    }
    return 0;
}

数列分块入门 7

https://loj.ac/problem/6283

区间乘法,区间加法,单点询问

先乘后加,乘的时候相应的加法标记也要乘

#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>

using namespace std;
const int N = 1e5 + 10;
const int Mod = 1e4 + 7;

#define LL long long

LL A[N], Mul[N], Add[N], bel[N];
int n, cnt, block;

#define gc getchar()

inline int read() {
    int x = 0, f = 1; char c = gc;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = gc;}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

inline void Sec_Add(int x, int y, int w) {
    if(bel[x] == bel[y]) {
        for(int i = (bel[x] - 1) * block + 1; i <= bel[x] * block; i ++) A[i] = (A[i] * Mul[bel[x]] + Add[bel[x]]);
        Add[bel[x]] = 0; Mul[bel[x]] = 1;
        for(int i = x; i <= y; i ++) A[i] += w, A[i] %= Mod;
        return ;
    } else {
        for(int i = (bel[x] - 1) * block + 1; i <= bel[x] * block; i ++) A[i] = (A[i] * Mul[bel[i]] + Add[bel[i]]) % Mod;
        Add[bel[x]] = 0; Mul[bel[x]] = 1;
        for(int i = x; i <= bel[x] * block; i ++) A[i] += w, A[i] %= Mod;
        for(int i = (bel[y] - 1) * block + 1; i <= bel[y] * block; i ++) A[i] = (A[i] * Mul[bel[i]] + Add[bel[i]]) % Mod;
        Add[bel[y]] = 0; Mul[bel[y]] = 1;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] += w, A[i] %= Mod;
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) Add[i] += w, Add[i] %= Mod;
}

inline void Sec_Mul(int x, int y, int w) {
    if(bel[x] == bel[y]) {
        for(int i = (bel[x] - 1) * block + 1; i <= bel[x] * block; i ++) A[i] = (A[i] * Mul[bel[i]] + Add[bel[i]]) % Mod;
        Add[bel[x]] = 0; Mul[bel[x]] = 1;
        for(int i = x; i <= y; i ++) A[i] = (A[i] * w) % Mod; 
        return ;
    } else {
        for(int i = (bel[x] - 1) * block + 1; i <= bel[x] * block; i ++) A[i] = (A[i] * Mul[bel[i]] + Add[bel[i]]) % Mod;
        Add[bel[x]] = 0; Mul[bel[x]] = 1;
        for(int i = x; i <= bel[x] * block; i ++) A[i] = (A[i] * w) % Mod;
        for(int i = (bel[y] - 1) * block + 1; i <= bel[y] * block; i ++) A[i] = (A[i] * Mul[bel[i]] + Add[bel[i]]) % Mod;
        Add[bel[y]] = 0; Mul[bel[y]] = 1;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] = (A[i] * w) % Mod; 
    }
    for(int i = bel[x] + 1; i < bel[y]; i ++) Add[i] = (Add[i] * w) % Mod, Mul[i] = (Mul[i] * w) % Mod; 
}

int main() {
    n = read();
    for(int i = 1; i <= n; i ++) A[i] = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1, Mul[i] = 1;
    int T = n;
    while(T --) {
        int opt = read(), l = read(), r = read(), c = read();
        if(opt == 0) Sec_Add(l, r, c);
        else if(opt == 1) Sec_Mul(l, r, c);
        else cout << (A[r] * Mul[bel[r]] + Add[bel[r]]) % Mod << "\n";
    }
    return 0;
}

 数列分块入门 8

https://loj.ac/problem/6284

暴力

区间修改没有什么难度,这题难在区间查询比较奇怪,因为权值种类比较多,似乎没有什么好的维护方法。

模拟一些数据可以发现,询问后一整段都会被修改,几次询问后数列可能只剩下几段不同的区间了。

我们思考这样一个暴力,还是分块,维护每个分块是否只有一种权值,区间操作的时候,对于同权值的一个块就O(1)统计答案,否则暴力统计答案,并修改标记,不完整的块也暴力。

 

这样看似最差情况每次都会耗费O(n)的时间,但其实可以这样分析:

假设初始序列都是同一个值,那么查询是O(√n),如果这时进行一个区间操作,它最多破坏首尾2个块的标记,所以只能使后面的询问至多多2个块的暴力时间,所以均摊每次操作复杂度还是O(√n)。

换句话说,要想让一个操作耗费O(n)的时间,要先花费√n个操作对数列进行修改。

初始序列不同值,经过类似分析后,就可以放心的暴力啦。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
    
using namespace std;
const int N = 1e5 + 10;

int bel[N], A[N], bec[N];
int n;
int block;

#define gc getchar()

inline int read() {
    int x = 0; char c = gc;
    while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
    return x;
}

int Sec_A(int x, int y, int c) {
    int ret(0);
    if(bel[x] == bel[y]) {
        if(bec[bel[x]] == c) ret = y - x + 1;
        else if(bec[bel[x]] == -1) for(int i = x; i <= y; i ++) if(A[i] == c) ret ++;
        if(~ bec[bel[x]]) for(int i = (bel[x] - 1) * block + 1; i < x; i ++) A[i] = bec[bel[x]];
        if(~ bec[bel[x]]) for(int i = y + 1; i <= bel[x] * block; i ++) A[i] = bec[bel[x]];
        for(int i = x; i <= y; i ++) A[i] = c;
        bec[bel[x]] = -1;
    } else {
        if(bec[bel[x]] == c) ret += bel[x] * block - x + 1;
        else if(bec[bel[x]] == -1) for(int i = x; i <= bel[x] * block; i ++) if(A[i] == c) ret ++;
        if(bec[bel[y]] == c) ret += y - ((bel[y] - 1) * block);
        else if(bec[bel[y]] == -1) for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) if(A[i] == c) ret ++;
        for(int i = bel[x] + 1; i < bel[y]; i ++) {
            if(bec[i] == c) ret += block;
            else if(bec[i] == -1)
                for(int j = (i - 1) * block + 1; j <= i * block; j ++)
                    if(A[j] == c) ret ++;
        }
        if(~ bec[bel[x]]) for(int i = (bel[x] - 1) * block + 1; i < x; i ++) A[i] = bec[bel[i]];
        for(int i = x; i <= bel[x] * block; i ++) A[i] = c;
        bec[bel[x]] = -1;
        for(int i = (bel[y] - 1) * block + 1; i <= y; i ++) A[i] = c;
        if(~ bec[bel[y]]) for(int i = y + 1; i <= bel[y] * block; i ++) A[i] = bec[bel[i]];
        bec[bel[y]] = -1;
        for(int i = bel[x] + 1; i < bel[y]; i ++) bec[i] = c;
    }
    return ret;
}

int main() {
    n = read();
    for(int i = 1; i <= n; i ++) bec[i] = -1;
    for(int i = 1; i <= n; i ++) A[i] = read();
    block = sqrt(n);
    for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / block + 1;
    int T = n;
    while(T --) {
        int l = read(), r = read(), c = read();
        cout << Sec_A(l, r, c) << "\n";
    }
    return 0;
}

 数列分块入门 9

https://loj.ac/problem/6285

区间众数查询

陈立杰区间众数解题报告

#include<map>
#include<set>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define mod 10007
#define pi acos(-1)
#define inf 0x7fffffff
#define ll long long
using namespace std;
ll read() {
    ll x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9') {
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9') {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
int n,blo,id;
int v[50005],bl[50005];
int f[505][505];
map<int,int>mp;
int val[50005],cnt[50005];
vector<int>ve[50005];
void pre(int x) {
    memset(cnt,0,sizeof(cnt));
    int mx=0,ans=0;
    for(int i=(x-1)*blo+1; i<=n; i++) {
        cnt[v[i]]++;
        int t=bl[i];
        if(cnt[v[i]]>mx||(cnt[v[i]]==mx&&val[v[i]]<val[ans]))
            ans=v[i],mx=cnt[v[i]];
        f[x][t]=ans;
    }
}
int query(int l,int r,int x) {
    int t=upper_bound(ve[x].begin(),ve[x].end(),r)-lower_bound(ve[x].begin(),ve[x].end(),l);
    return t;
}
int query(int a,int b) {
    int ans,mx;
    ans=f[bl[a]+1][bl[b]-1];
    mx=query(a,b,ans);
    for(int i=a; i<=min(bl[a]*blo,b); i++) {
        int t=query(a,b,v[i]);
        if(t>mx||(t==mx&&val[v[i]]<val[ans]))ans=v[i],mx=t;
    }
    if(bl[a]!=bl[b])
        for(int i=(bl[b]-1)*blo+1; i<=b; i++) {
            int t=query(a,b,v[i]);
            if(t>mx||(t==mx&&val[v[i]]<val[ans]))ans=v[i],mx=t;
        }
    return ans;
}
int main() {
    n=read();
    blo=200;
    for(int i=1; i<=n; i++) {
        v[i]=read();
        if(!mp[v[i]]) {
            mp[v[i]]=++id;
            val[id]=v[i];
        }
        v[i]=mp[v[i]];
        ve[v[i]].push_back(i);
    }
    for(int i=1; i<=n; i++)bl[i]=(i-1)/blo+1;
    for(int i=1; i<=bl[n]; i++)pre(i);
    for(int i=1; i<=n; i++) {
        int a=read(),b=read();
        if(a>b)swap(a,b);
        printf("%d\n",val[query(a,b)]);
    }
    return 0;
}

分块算法小结:

  暴力算法

  时间复杂度可以

  空间允许

  优美

posted @ 2018-05-01 17:43  xayata  阅读(495)  评论(0编辑  收藏  举报