[Bob]Collectors Problem
https://vjudge.net/problem/UVA-10779#author=0
网络流
1.Bob向他有的贴纸连边,流量为他有的贴纸数量
2.每一种贴纸向汇点连流量为1的边
3.其余人,如果没贴纸i,由i向这个人连一条流量为1的边
4.如果贴纸i数量>1,由这个人向i连一条流量为数量-1的边
#include <cstdio> #include <algorithm> #include <queue> using namespace std; const int N = 45; const int M = 650; #define gc getchar() #define oo 999999999 int n, m, now, S, T, TI; int head[N], now_head[N], calc[N], dis[N]; struct Node{ int u, v, flow, nxt; }G[M]; queue <int> Q; inline int read(){ int x = 0; char c = gc; while(c < '0' || c > '9') c = gc; while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc; return x; } inline void add(int u, int v, int flow){ G[now].v = v; G[now].flow = flow; G[now].nxt = head[u]; head[u] = now ++; } inline bool bfs(){ for(int i = S; i <= T; i ++) now_head[i] = head[i], dis[i] = -1; dis[S] = 0; while(!Q.empty()) Q.pop(); Q.push(S); while(!Q.empty()){ int topp = Q.front(); Q.pop(); for(int i = head[topp]; ~ i; i = G[i].nxt){ int v = G[i].v; if(dis[v] == -1 && G[i].flow > 0){ dis[v] = dis[topp] + 1; if(v == T) return 1; Q.push(v); } } } return 0; } int dfs(int now, int flow){ if(now == T) return flow; int ret = 0; for(int & i = now_head[now]; ~ i; i = G[i].nxt){ int v = G[i].v; if(dis[v] == dis[now] + 1 && G[i].flow > 0){ int f = dfs(v, min(G[i].flow, flow - ret)); if(f) {G[i].flow -= f; G[i ^ 1].flow += f; ret += f; if(ret == flow) break;} } } if(ret != flow) dis[now] = -1; return ret; } inline int Dinic(){ int ret = 0; while(bfs()) ret += dfs(S, oo); return ret; } int main() { TI = read(); for(int Ti = 1; Ti <= TI; Ti ++){ n = read(); m = read(); now = 0; T = n + m + 1; S = 1; for(int i = 0; i <= T; i ++) head[i] = -1; for(int i = 1; i <= m; i ++) add(n + i, T, 1), add(T, n + i, 0); int k = read(); for(int i = 1; i <= k; i ++){int im = read(); calc[im] ++;} for(int i = 1; i <= m; i ++) if(calc[i]) add(1, n + i, calc[i]), add(n + i, 1, 0); for(int i = 1; i <= m; i ++) calc[i] = 0; for(int i = 2; i <= n; i ++){ int k = read(); for(int j = 1; j <= k; j ++){int im = read(); calc[im] ++;} for(int j = 1; j <= m; j ++) if(calc[j] > 1) add(i, n + j, calc[j] - 1), add(n + j, i, 0); else if(!calc[j]) add(n + j, i, 1), add(i, n + j, 0); for(int j = 1; j <= m; j ++) calc[j] = 0; } int answer = Dinic(); printf("Case #%d: %d\n", Ti, answer); } return 0; } /* 2 2 5 6 1 1 1 1 1 1 3 1 2 2 3 5 4 1 2 1 1 3 2 2 2 5 1 3 4 4 3 */