NOIP欢乐模拟赛 T3 解题报告

3.小澳的葫芦

calabash.cpp/c/pas

题目描述

小澳最喜欢的歌曲就是《葫芦娃》。

一日表演唱歌,他尽了洪荒之力,唱响心中圣歌。

随之,小澳进入了葫芦世界。

葫芦世界有n个葫芦,标号为1~ n。n个葫芦由m条藤连接,每条藤连接了两个葫芦,这些藤构成了一张有向无环图。小澳爬过每条藤都会消耗一定的能量。

小澳站在1号葫芦上(你可以认为葫芦非常大,可以承受小澳的体重),他想沿着藤爬到n号葫芦上,其中每个葫芦只经过一次

小澳找到一条路径,使得消耗的能量与经过的葫芦数的比值最小

 

输入格式

输入文件名为calabash.in。

输入文件第一行两个正整数n,m,分别表示葫芦的个数和藤数。

接下来m行,每行三个正整数u,v,w,描述一条藤,表示这条藤由u连向v,小澳爬过这条藤需要消耗w点能量。

 

输出格式

输出文件名为calabash.out。

一行一个实数,表示答案(误差不超过 10^-3)。

 

 

输入输出样例

calabash.in

calabash.out

4 6

1 2 1

2 4 6

1 3 2

3 4 4

2 3 3

1 4 8

2.000

 

 

【输入输出样例说明】

有4种爬法:

1->4,消耗能量8,经过2个葫芦,比值为8/2=4。

1->2->4,消耗能量1+6=7,经过3个葫芦,比值为7/3≈2.33。

1->3->4,消耗能量2+4=6,经过3个葫芦,比值为6/3=2。

1->2->3->4,消耗能量1+3+4=8,经过4个葫芦,比值为8/4=2。

所以选第三种或第四种方案,答案为2。

 

 

 

数据规模与约定

测试点编号

n

m

特殊说明

1

2

1

 

2

100

99

除1外,所有葫芦的入度均为1

3

100

105

所有从1到n的路径经过的葫芦数相等

4

100

1000

 

5

100

1000

 

6

199

198

除1外,所有葫芦的入度均为1

7

200

231

所有从1到n的路径经过的葫芦数相等

8

200

2000

 

9

200

2000

 

10

200

2000

 

 

对于所有数据,小澳爬过每条藤消耗的能量不会超过10^3,且一定存在一条从1到n的路径。

 

—————————————————分割线———————————————

分析:

【algorithm1】  第一个测试点只有一条边,输出 w/2 就可以啦。  可以通过第 1 个测试点。

【algorithm2】  注意到“除 1 外,所有葫芦的入度均为 1”,也就是说,从 1 到 n 的路径只有 一条,输出这一条路径的长度与这条路径上的点数的比值就可以了。  可以通过第 1、2、6 个测试点。

【algorithm3】  对于这样一类特殊数据,“所有从 1 到 n 的路径经过的葫芦数相等”,也就 是说 1~n 的最短路就是最优路径,最短路的长度与路径上的点数的比值就是答 案。  可以通过第 1、2、3、6、7 个测试点。

【algorithm4】  另建一个起点 0,连接一条 0 到 1 长度为 0 的边,就此将问题转化为长度和 边数最小比值。这个问题的求解需要分数规划。  假设答案为 ans,对于任意一条由 k 条边组成的路径,有:  ( w1 + w2 + w3 + …+w) / k >= ans ;  

转化一下:  ( w+ w+ w+ … + w) >= ans * k ;  即 ( w- ans ) + ( w- ans ) + ( w- ans ) + … + ( w- ans ) >= 0 。  于是就得到了这样一个算法:  二分答案 x,每次将每一条边的权值减去 x 求最短路,判断 1~n 的最短路是 否大于 0:若大于 0,则说明答案 ans>x;否则说明 ans<x。  这样可以通过所有测试点。 

 1 #include "cstdio"
 2 #include "iostream"
 3 #include "vector"
 4 #include "queue"
 5 #include "cstring"
 6 
 7 using namespace std ;
 8 struct Edge { int to , next ;double val ,org; } ;//org原始的边权 
 9 const int maxN = 10010 ;
10 const double INF = 1e20 ;
11 const double eps = 1e-4 ;//误差范围 
12 
13 Edge e[ maxN << 2 ] ;
14 double Dis[ maxN ] ;
15 bool vis[ maxN ] ;
16 int head[ maxN ] ;
17 
18 int cnt , N , M ;
19 
20 queue<int> q;
21 
22 int INPUT ( ) {
23         int x = 0 , f = 1 ; char ch = getchar ( ) ;
24         while ( ch < '0' || ch > '9' ) { if ( ch == '-')f = - 1 ;ch = getchar ( ) ;}
25         while ( ch >='0' && ch <='9' ) { x = ( x << 1 ) + ( x << 3 ) + ch - '0' ; ch = getchar ( ) ;}
26         return x * f ;
27 }
28 
29 void Add_Edge ( const int x , const int y , const double val ) {
30         e[ ++cnt ].to = y ;
31         e[ cnt ].org = val ;
32         e[ cnt ].next = head[ x ] ;
33         head[ x ] = cnt ;
34 }
35 
36 bool SPFA ( const double x ) {//纯SPFA算法 
37         memset ( vis , false , sizeof ( vis ) ) ;
38         queue < int > Q ;
39         for ( int i=1 ; i<=N ; ++i ) 
40                 Dis[ i ] = INF ;
41         for ( int i=1 ; i<=cnt ; ++i ) e[ i ].val = e[ i ].org - x ;
42         Q.push( 0 ) ; 
43         vis[ 0 ] = true ;
44         Dis[ 0 ] = 0 ;
45         while ( !Q.empty( ) ) { 
46                 int t = Q.front ( ) ; Q.pop ( ) ; vis[ t ] = false ;
47                 for ( int i=head[ t ] ; i ; i = e[ i ].next ) {
48                         int temp = e[ i ].to ;
49                         if ( Dis[ temp ] - eps > Dis[ t ] + e[ i ].val ) {
50                                 Dis[ temp ] = Dis[ t ] + e[ i ].val ;
51                                 if ( !vis[ temp ] ) {
52                                         Q.push( temp ) ;
53                                         vis[ temp ] = true ;
54                                 } 
55                         }
56                 } 
57         }
58 
59         return Dis[ N ] < -eps ;
60 }
61 
62 int main ( ) {
63         N = INPUT ( ), M = INPUT ( ) ; 
64         for ( int i=1 ; i<=M ; ++i ) {
65                 int _x = INPUT ( ) , _y = INPUT( ) , _val = INPUT ( ) ;
66                 Add_Edge ( _x , _y , _val ) ; 
67         }
68         Add_Edge ( 0 , 1 , 0 ) ;//加入0虚拟节点 
69         double l = 0 , r = 1e3 ;
70         while ( r - l >= eps ) {//二分答案 
71                 double mid = ( l + r ) / 2.0 ;//2.0防止精度误差 
72                 if ( SPFA ( mid ) ) r = mid ;
73                 else                l = mid ;
74         }
75         printf ( "%.3lf" , l ) ;
76         return 0 ;
77 } 
calabash

NOIP_RP++;

2016-10-08 21:20:05

 

(完)

 

posted @ 2016-10-08 21:22  SHHHS  阅读(293)  评论(0编辑  收藏  举报