python-networkx学习(1)

介绍:

networkx是python的一个库,它为图的数据结构提供算法、生成器以及画图工具。近日在使用ryu进行最短路径获取,可以通过该库来简化工作量。该库采用函数方式进行调用相应的api,其参数类型通常为图对象。

函数API的调用,按照以下步骤来创建构建图:

1.networkx的加载

在python中调用networkx通常只需要将该库导入即可

import networkx as nx

 

2.图对象的创建

networkx提供了四种基本图对象:Graph,DiGraph,MultiGraph,MultiDiGraph。

使用如下调用方式,可以创建以上四种图对象的空图。

G=nx.Graph()
G=nx.DiGraph()
G=nx.MultiGraph()
G=nx.MultiDiGraph()

在 networkx中,图的各个节点允许以哈希表对象来表示,而对于图中边的各个参量,则可以通过与边相关联的方式来标识,一般而言,对于权重,用weight作为keyword,而对于其他的参数,使用者可以采用任何除weight以外的keyword来命名。

3.在2中,创建的只是一副空图,为了得到一个有节点、有边的图,一般采用下面这个函数:

G.add_edge(1,2) #default edge data=1 
G.add_edge(1,2) #specify edge data=0.9

add_edge()函数,该函数在调用时需要传入两个参数u和v,以及多个可选参数

u和v即图中的两个节点,如果图中不存在节点,在调用时会自动将这两个节点添加入内,同时构建两个节点之间的连接关系,可选参数通常指这条边的权重等关系参量。需要注意的是,如果图中已经存在了这条边,重新进行添加时会对这条边进行跟新操作(也就是覆盖了原有的信息)。

对于该函数,除了上述的构建方式以外,还有以下几种方式来创建边:

G.add_edge(*e)             # single edge as tuple of two nodes
G.add_edge(1, 3, weight=7, capacity=15, length=342.7)  #using many arguements to create edge
G.add_edges_from( [(1, 2)] ) # add edges from iterable container

  有时候,当采用默认方式创建边以后,我们可能还会往边里面添加边的相关参数,这时候,可以采用下面的方式来更新边的信息:

#For non-string attribute keys, use subscript notation.
G.add_edge(1, 2)
G[1][2].update({0: 5})     #更新边的信息
G.edges[1, 2].update({0: 5})  #更新边的信息
#上述两种更新方式,择一选取即可

  细心的朋友可能注意到我在写创建图的内容的时候,提到了add_edges_from()函数,该函数也是用来创建边的,该方式与add_edges()略有不同,比之add_edges()采用一个一个节点的方式进行创建,它来的更为便利。这个函数在调用时,需要一个节点元组作为参数以及多个可选参数作为边的信息。你可以这么传递:

默认创建节点之间的边:

G.add_edges_from([(u,v)])

 也可以这么写,在创建的同时添加信息:

G.add_edges_from([(3, 4), (1, 4)], label='WN2898') 

  通过上述方式,就构建了一个3-4-1的图的连接,并给每条边打上了标签。

由此你就可以创建出自己的图模型了。

 

 

          

posted @ 2018-02-03 11:24  守功  阅读(5245)  评论(0编辑  收藏  举报