Hadoop学习总结 (五) —— MAPREDUCE(2)
1、OutFormat数据输出
2、MapTask工作机制
(1)Read阶段:MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。
(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并mapreduce.task.io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。
总结:
MAPTASK工作机制
1、 对文本进行处理,获取数据的信息,配置参数,进行任务分配规划
2、提交信息该yarn,计算出maptask的数量
3、根据划分会给出相应的分块进行工作
4、利用inputformat的recorderreader读入KV对,写入缓存
5、缓存默认100M,当使用了80%时会进行溢写到磁盘,分区且有序。使用快排先对分区排序再对key进行排序,并将元信息写入索引中。最终会将处理后的数据进行合并
2、ReduceTask工作机制
(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Sort阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
(3)Reduce阶段:reduce()函数将计算结果写到HDFS上。
3、排序
1)排序概述
(1)MapTask
当环形缓冲区使用率达到阈值时会对缓冲区的数据进行快排
并将有序数据写到磁盘上
然后再处理完数据后会对磁盘上的所有文件进行归并排序
(2)ReduceTask
从每个maptask上拷贝相应数据文件
如果文件太大会溢写到磁盘
如果磁盘上数目太大会归并排序成更大的文件
如果内存文件大小太大会合并写到磁盘上
所有数据拷贝结束后会统一对内存和磁盘的所有数据进行归并排序
2)排序分类
1)部分排序
MapReduce根据输入数据进行排序,保障文件内部有序
2)全排序
最终输出结果只有一个文件,且文件内部有序
3)辅助排序
在reduce端对key进行分组。应用于在接收key为bean对象时想让一个或几个字段相同的key进入一个reduce方法时采用分组排序
4)二次排序
在自定义排序过程中,如果compareto中的判断条件是两个即二次排序
4、ReduceTask并行度
5、Join应用
1)Reduce join
Map端的主要工作:为来自不同表或文件的key/value对,打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出。
Reduce端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在Map阶段已经打标志)分开,最后进行合并就ok了。
2)缺点
缺点:这种方式中,合并的操作是在Reduce阶段完成,Reduce端的处理压力太大,Map节点的运算负载则很低,资源利用率不高,且在Reduce阶段极易产生数据倾斜。
解决方案:Map端实现数据合并。
3)Map join
(1)使用场景
Map Join适用于一张表十分小、一张表很大的场景。
(2)优点
思考:在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?
在Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。
(3)具体办法:采用DistributedCache
(1)在Mapper的setup阶段,将文件读取到缓存集合中。
(2)在Driver驱动类中加载缓存。
6、MapReduce总结
1)输入数据接口:InputFormat
(1)默认使用的实现类是:TextInputFormat
(2)TextInputFormat的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为key,行内容作为value返回。
(3)CombineTextInputFormat可以把多个小文件合并成一个切片处理,提高处理效率。
2)逻辑处理接口:Mapper
用户根据业务需求实现其中三个方法:map() setup() cleanup ()
3)Partitioner分区
(1)有默认实现 HashPartitioner,逻辑是根据key的哈希值和numReduces来返回一个分区号;key.hashCode()&Integer.MAXVALUE % numReduces
(2)如果业务上有特别的需求,可以自定义分区。
4)Comparable排序
(1)当我们用自定义的对象作为key来输出时,就必须要实现WritableComparable接口,重写其中的compareTo()方法。
(2)部分排序:对最终输出的每一个文件进行内部排序。
(3)全排序:对所有数据进行排序,通常只有一个Reduce。
(4)二次排序:排序的条件有两个。
5)Combiner合并
Combiner合并可以提高程序执行效率,减少IO传输。但是使用时必须不能影响原有的业务处理结果。
6)逻辑处理接口:Reducer
用户根据业务需求实现其中三个方法:reduce() setup() cleanup ()
7)输出数据接口:OutputFormat
(1)默认实现类是TextOutputFormat,功能逻辑是:将每一个KV对,向目标文本文件输出一行。
(2)用户还可以自定义OutputFormat。
7、数据压缩
1)压缩的好处和坏处
压缩的优点:以减少磁盘IO、减少磁盘存储空间。
压缩的缺点:增加CPU开销。
2)压缩原则
(1)运算密集型的Job,少用压缩
(2)IO密集型的Job,多用压缩
(3)压缩算法对比介绍
压缩格式 |
Hadoop自带? |
算法 |
文件扩展名 |
是否可切片 |
换成压缩格式后,原来的程序是否需要修改 |
DEFLATE |
是,直接使用 |
DEFLATE |
.deflate |
否 |
和文本处理一样,不需要修改 |
Gzip |
是,直接使用 |
DEFLATE |
.gz |
否 |
和文本处理一样,不需要修改 |
bzip2 |
是,直接使用 |
bzip2 |
.bz2 |
是 |
和文本处理一样,不需要修改 |
LZO |
否,需要安装 |
LZO |
.lzo |
是 |
需要建索引,还需要指定输入格式 |
Snappy |
是,直接使用 |
Snappy |
.snappy |
否 |
和文本处理一样,不需要修改 |
Gzip压缩
优点:压缩率比较高;
缺点:不支持Split;压缩/解压速度一般;
Bzip2压缩
优点:压缩率高;支持Split;
缺点:压缩/解压速度慢。
Lzo压缩
优点:压缩/解压速度比较快;支持Split;
缺点:压缩率一般;想支持切片需要额外创建索引。
Snappy压缩
优点:压缩和解压缩速度快;
缺点:不支持Split;压缩率一般;
3)压缩位置选择
4)压缩参数配置
(1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器
压缩格式 |
对应的编码/解码器 |
DEFLATE |
org.apache.hadoop.io.compress.DefaultCodec |
gzip |
org.apache.hadoop.io.compress.GzipCodec |
bzip2 |
org.apache.hadoop.io.compress.BZip2Codec |
LZO |
com.hadoop.compression.lzo.LzopCodec |
Snappy |
org.apache.hadoop.io.compress.SnappyCodec |
(2)要在Hadoop中启用压缩,可以配置如下参数
参数 |
默认值 |
阶段 |
建议 |
io.compression.codecs (在core-site.xml中配置) |
无,这个需要在命令行输入hadoop checknative查看 |
输入压缩 |
Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress(在mapred-site.xml中配置) |
false |
mapper输出 |
这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec(在mapred-site.xml中配置) |
org.apache.hadoop.io.compress.DefaultCodec |
mapper输出 |
企业多使用LZO或Snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) |
false |
reducer输出 |
这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) |
org.apache.hadoop.io.compress.DefaultCodec |
reducer输出 |
使用标准工具或者编解码器,如gzip和bzip2 |
8、常见错误
1)导包容易出错。尤其Text和CombineTextInputFormat。
2)Mapper中第一个输入的参数必须是LongWritable或者NullWritable,不可以是IntWritable. 报的错误是类型转换异常。
3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明Partition和ReduceTask个数没对上,调整ReduceTask个数。
4)如果分区数不是1,但是reducetask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。
5)在Windows环境编译的jar包导入到Linux环境中运行,
hadoop jar wc.jar com.atguigu.mapreduce.wordcount.WordCountDriver /user/atguigu/ /user/atguigu/output
报如下错误:
Exception in thread "main" java.lang.UnsupportedClassVersionError: com/atguigu/mapreduce/wordcount/WordCountDriver : Unsupported major.minor version 52.0
原因是Windows环境用的jdk1.7,Linux环境用的jdk1.8。
解决方案:统一jdk版本。
6)缓存pd.txt小文件案例中,报找不到pd.txt文件
原因:大部分为路径书写错误。还有就是要检查pd.txt.txt的问题。还有个别电脑写相对路径找不到pd.txt,可以修改为绝对路径。
7)报类型转换异常。
通常都是在驱动函数中设置Map输出和最终输出时编写错误。
Map输出的key如果没有排序,也会报类型转换异常。
8)集群中运行wc.jar时出现了无法获得输入文件。
原因:WordCount案例的输入文件不能放用HDFS集群的根目录。
9)出现了如下相关异常
Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method) at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:609) at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977) java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries. at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356) at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:364)
解决方案:拷贝hadoop.dll文件到Windows目录C:\Windows\System32。个别同学电脑还需要修改Hadoop源码。
方案二:创建如下包名,并将NativeIO.java拷贝到该包名下
10)自定义Outputformat时,注意在RecordWirter中的close方法必须关闭流资源。否则输出的文件内容中数据为空。
@Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { if (atguigufos != null) { atguigufos.close(); } if (otherfos != null) { otherfos.close(); } }
9、最终总结
1、InputFormat
1)默认的是TextInputformat kv key偏移量,v :一行内容
2)处理小文件CombineTextInputFormat 把多个文件合并到一起统一切片
2、Mapper
setup()初始化; map()用户的业务逻辑; clearup() 关闭资源;
3、分区
默认分区HashPartitioner ,默认按照key的hash值%numreducetask个数
自定义分区
4、排序
1)部分排序 每个输出的文件内部有序。
2)全排序: 一个reduce ,对所有数据大排序。
3)二次排序: 自定义排序范畴, 实现 writableCompare接口, 重写compareTo方法
总流量倒序 按照上行流量 正序
5、Combiner
前提:不影响最终的业务逻辑(求和 没问题 求平均值)
提前聚合map => 解决数据倾斜的一个方法
6、Reducer
用户的业务逻辑;
setup()初始化;reduce()用户的业务逻辑; clearup() 关闭资源;
7、OutputFormat
1)默认TextOutputFormat 按行输出到文件
2)自定义