Causal Machine Learning: A Survey and Open Problems(因果机器学习:调查与未解决的问题)

论文地址:[2206.15475] Causal Machine Learning: A Survey and Open Problems (arxiv.org)

1.该篇论文主要工作:

1).categorize work in CausalML into five groups according to the problems they tackle:(1) causal supervised learning,(2) causal generative modeling,(3) causal explanations,(4) causal fairness,(5) causal reinforcement learning.

2).systematically compare its methods and point out open problems。

3).provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

 

 

2.重点内容:

1).Causal Supervised Learning

 

2).Causal Generative Modeling

 

3).Causal Explanations

 

4).Causal Fairness

 

5).Causal Reinforcement Learning

 

6).Modality-specific Applications

7).Causal Benchmarks

 

posted @   思凡念真  阅读(279)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
历史上的今天:
2021-07-26 用jedis执行lua脚本
2021-07-26 Spring中三个注解@PathVariable、@Param和@RequestParam间的区别
2015-07-26 python学习之路-书籍推荐
点击右上角即可分享
微信分享提示