Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning(在序列到序列学习中理解和改进编码器层的融合)
存在的问题:
Encoder layer fusion (EncoderFusion) is a technique to fuse all the encoder layers (instead of the uppermost layer) for sequence-to-sequence (Seq2Seq) models,which has proven effective on various NLP tasks。
Recent studies reveal that fusing the intermediate encoder layers (EncoderFusion) is beneficial for Seq2Seq models, such as layer attention, layer aggregation, and layer-wise coordination。
the uppermost decoder layer pays more attention to the encoder embedding layer. Masking the encoder embedding layer significantly drops model performance by generating hallucinatory (i.e. fluent but unfaithful to the source) predictions. The encoded representation of the standard Seq2Seq models (i.e. w/o fusing encoder layers) may not have enough capacity to model both semantic and surface features (especially at the encoder embedding layer). We call the problem described above the source representation bottleneck。
论文的创新点:
1.use fine-grained layer attention method to qualitatively and quantitatively evaluate the contribution of individual encoder layers。
2.EncoderFusion approaches: connecting the encoder embedding layer to softmax layer (SurfaceFusion)。approach shortens the path distance between source and target embeddings, which can help to learn better bilingual embeddings with direct interactions。
3.在翻译、文本摘要、语法错误纠正三个应用场景的对比实验做得比较充分详细,缺点基本网络架构图都不给一个。
------------恢复内容结束------------
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix