Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning(在序列到序列学习中理解和改进编码器层的融合)

存在的问题:

Encoder layer fusion (EncoderFusion) is a technique to fuse all the encoder layers (instead of the uppermost layer) for sequence-to-sequence (Seq2Seq) models,which has proven effective on various NLP tasks。

Recent studies reveal that fusing the intermediate encoder layers (EncoderFusion) is beneficial for Seq2Seq models, such as layer attentionlayer aggregationand layer-wise coordination

the uppermost decoder layer pays more attention to the encoder embedding layer. Masking the encoder embedding layer significantly drops model performance by generating hallucinatory (i.e. fluent but unfaithful to the source) predictions. The encoded representation of the standard Seq2Seq models (i.e. w/o fusing encoder layers) may not have enough capacity to model both semantic and surface features (especially at the encoder embedding layer). We call the problem described above the source representation bottleneck

论文的创新点:

    1.use fine-grained layer attention method to qualitatively and quantitatively evaluate the contribution of individual encoder layers。

    2.EncoderFusion approachesconnecting the encoder embedding layer to softmax layer (SurfaceFusion)。approach shortens the path distance between source and target embeddings, which can help to learn better bilingual embeddings with direct interactions。

   3.在翻译、文本摘要、语法错误纠正三个应用场景的对比实验做得比较充分详细,缺点基本网络架构图都不给一个。

 

 

 

 

 

 

------------恢复内容结束------------

posted @   思凡念真  阅读(139)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
点击右上角即可分享
微信分享提示