【leetcode】931. Minimum Falling Path Sum
题目如下:
Given a square array of integers
A
, we want the minimum sum of a falling path throughA
.A falling path starts at any element in the first row, and chooses one element from each row. The next row's choice must be in a column that is different from the previous row's column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]] Output: 12 Explanation: The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is
[1,4,7]
, so the answer is12
.
Note:
1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100
解题思路:动态规划的入门级题目。状态转移方程: dp[i][j] = min(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+1]) + A[i][j]。
代码如下:
class Solution(object): def minFallingPathSum(self, A): """ :type A: List[List[int]] :rtype: int """ for i in range(len(A)): for j in range(len(A[i])): if i - 1 < 0: continue minv = A[i-1][j] if j - 1 >= 0: minv = min(minv,A[i-1][j-1]) if j + 1 < len(A[i]): minv = min(minv,A[i-1][j+1]) A[i][j] = minv + A[i][j] #print A return min(A[-1])