【leetcode】1508. Range Sum of Sorted Subarray Sums
题目如下:
Given the array
nums
consisting ofn
positive integers. You computed the sum of all non-empty continous subarrays from the array and then sort them in non-decreasing order, creating a new array ofn * (n + 1) / 2
numbers.Return the sum of the numbers from index
left
to indexright
(indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 10^9 + 7.Example 1:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 5 Output: 13 Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have
the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.Example 2:
Input: nums = [1,2,3,4], n = 4, left = 3, right = 4 Output: 6 Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of
the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.Example 3:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 10 Output: 50Constraints:
1 <= nums.length <= 10^3
nums.length == n
1 <= nums[i] <= 100
1 <= left <= right <= n * (n + 1) / 2
解题思路:怎么说呢,nums.length最大才1000,表示O(n^2)的时间复杂度完全可以接受,那就计算出所有的子数组的和吧。
代码如下:
class Solution(object): def rangeSum(self, nums, n, left, right): """ :type nums: List[int] :type n: int :type left: int :type right: int :rtype: int """ val = [] for i in range(len(nums)): count = 0 for j in range(i,len(nums)): count += nums[j] val.append(count) val.sort() return sum(val[left-1:right])