TS基础应用 & Hook中的TS
TS基础应用 & Hook中的TS
袋鼠云数栈前端团队
说在前面
本文难度偏中下,涉及到的点大多为如何在项目中合理应用ts,小部分会涉及一些原理,受众面较广,有无TS基础均可放心食用。 **>>>> 阅完本文,您可能会收获到<<<<**
- 若您还不熟悉 TS,那本文可帮助您完成 TS 应用部分的学习,伴随众多 Demo 例来引导业务应用;
- 若您比较熟悉 TS,那本文可当作复习文,带您回顾知识,希望能在某些点引发您新发现和思考;
- 针对于 class 组件的 IState 和 IProps,类比 Hook 组件的部分写法和思考;
TIPS:超好用的在线 TS 编辑器(诸多配置项可手动配置) 传送门:TS 在线
一、什么是 TS
不扯晦涩的概念,通俗来说 TypeScript 就是 JavaScript 的超集,它具有可选的类型,并可以编译为纯 JavaScript 运行。(笔者一直就把 TypeScript 看作 JavaScript 的 Lint)那么问题来了,为什么 TS 一定要设计成静态的? 或者换句话说,我们为什么需要向 JavaScript 添加类型规范呢 ?
经典自问自答环节——因为它可以解决一些 JS 尚未解决的痛点:
- JS 是动态类型的语言,这也意味着在实例化之前我们都不知道变量的类型,但是使用 TS 可以在运行前就避免经典低级错误。 例: Uncaught TypeError:'xxx' is not a function
⚠️ 典中典级别的错误 :
JS 就是这样,只有在运行时发生了错误才告诉我有错,但是当 TS 介入后:
好家伙!直接把问题在编辑器阶段抛出,nice!
- 懒人狂欢。 规范方便,又不容易出错,对于 VS Code,它能做的最多只是标示出有没有这个属性,但并不能精确的表明这个属性是什么类型,但 TS 可以通过类型推导/反推导(说白话:如果您未明确编写类型,则将使用类型推断来推断您正在使用的类型),从而完美优化了代码补全这一项:
第一个 Q&A——思考 :
那么我们还能想到在业务开发中 TS 解决了哪些 JS 的痛点呢?(提问)
回答,总结,补充: -对函数参数的类型限制; -对数组和对象的类型限制,避免定义出错 例如数据解构复杂或较多时, 可能会出现数组定义错误 a = { }, if (a.length){ // xxxxx }
-let functionA = 'jiawen' // 实际上 let functionA: string = 'jiawen'
- 使我们的应用代码更易阅读和维护,如果定义完善,可以通过类型大致明白参数的作用;
相信通过上述简单的bug-demo,各位已对TS有了一个初步的重新认识 接下来的章节便正式介绍我们在业务开发过程中如何用好TS
二、怎么用 TS
在业务中如何用TS/如何用好TS?这个问题其实和 " 在业务中怎么用好一个API " 是一样的。首先要知道这个东西在干嘛,参数是什么,规则是什么,能够接受有哪些扩展......等等。 简而言之,撸它!
TS 常用类型归纳
通过对业务中常见的 TS 错误做出的一个综合性总结归纳,希望 Demos 会对您有收获
元语(primitives)之 string number boolean
笔者把基本类型拆开的原因是: 不管是中文还是英文文档,primitives/元语/元组 这几个名词都频繁出镜,笔者理解的白话:希望在类型约束定义时,使用的是字面量而不是内置对象类型,官方文档:
let a: string = 'jiawen';
let flag: boolean = false;
let num: number = 150
interface IState: {
flag: boolean;
name: string;
num: number;
}
元组
// 元组类型表示已知元素数量和类型的数组,各元素的类型不必相同,但是对应位置的类型需要相同。
let x: [string, number];
x = ['jiawen', 18]; // ok
x = [18, 'jiawen']; // Erro
console.log(x[0]); // jiawen
undefined null
let special: string = undefined
// 值得一提的是 undefined/null 是所有基本类型的子类,
// 所以它们可以任意赋值给其他已定义的类型,这也是为什么上述代码不报错的原因
object 和 { }
// object 表示的是常规的 Javascript对象类型,非基础数据类型
const offDuty = (value: object) => {
console.log("value is ", value);
}
offDuty({ prop: 0}) // ok
offDuty(null) offDuty(undefined) // Error
offDuty(18) offDuty('offDuty') offDuty(false) // Error
// {} 表示的是 非null / 非undefined 的任意类型
const offDuty = (value: {}) => {
console.log("value is ", value);
}
offDuty({ prop: 0}) // ok
offDuty(null) offDuty(undefined) // Error
offDuty(18) offDuty('offDuty') offDuty(false) // ok
offDuty({ toString(){ return 333 } }) // ok
// {} 和Object几乎一致,区别是Object会对Object内置的 toString/hasOwnPreperty 进行校验
const offDuty = (value: Object) => {
console.log("value is ", value);
}
offDuty({ prop: 0}) // ok
offDuty(null) offDuty(undefined) // Error
offDuty(18) offDuty('offDuty') offDuty(false) // ok
offDuty({ toString(){ return 333 } }) // Error
如果需要一个对象类型,但对属性没有要求,建议使用 object
{} 和 Object 表示的范围太大,建议尽量不要使用
object of params
// 我们通常在业务中可多采用点状对象函数(规定参数对象类型)
const offDuty = (value: { x: number; y: string }) => {
console.log("x is ", value.x);
console.log("y is ", value.y);
}
// 业务中一定会涉及到"可选属性";先简单介绍下方便快捷的“可选属性”
const offDuty = (value: { x: number; y?: string }) => {
console.log("必选属性x ", value.x);
console.log("可选属性y ", value.y);
console.log("可选属性y的方法 ", value.y.toLocaleLowerCase());
}
offDuty({ x: 123, y: 'jiawen' })
offDuty({ x: 123 })
// 提问: 上述代码有问题吗?
答案:
// offDuty({ x: 123 }) 会导致结果报错value.y.toLocaleLowerCase()
// Cannot read property 'toLocaleLowerCase' of undefined
方案1: 手动类型检查
const offDuty = (value: { x: number; y?: string }) => {
if (value.y !== undefined) {
console.log("可能不存在的 ", value.y.toUpperCase());
}
}
方案2:使用可选属性 (推荐)
const offDuty = (value: { x: number; y?: string }) => {
console.log("可能不存在的 ", value.y?.toLocaleLowerCase());
}
unknown 与 any
// unknown 可以表示任意类型,但它同时也告诉TS, 开发者对类型也是无法确定,做任何操作时需要慎重
let Jiaven: unknown
Jiaven.toFixed(1) // Error
if (typeof Jiaven=== 'number') {
Jiaven.toFixed(1) // OK
}
当我们使用any类型的时候,any会逃离类型检查,并且any类型的变量可以执行任意操作,编译时不会报错
anyscript === javascript
注意:any 会增加了运行时出错的风险,不到万不得已不要使用;
如果遇到想要表示【不知道什么类型】的场景,推荐优先考虑 unknown
union 联合类型
union也叫联合类型,由两个或多个其他类型组成,表示可能为任何一个的值,类型之间用 ' | '隔开
type dayOff = string | number | boolean
联合类型的隐式推导可能会导致错误,遇到相关问题请参考语雀 code and tips —— 《TS的隐式推导》
.值得注意的是,如果访问不共有的属性的时候,会报错,访问共有属性时不会.上个最直观的demo
function dayOff (value: string | number): number {
return value.length;
}
// number并不具备length,会报错,解决方法:typeof value === 'string'
function dayOff (value: string | number): number {
return value.toString();
}
// number和string都具备toString(),不会报错
never
// never是其它类型(包括 null 和 undefined)的子类型,代表从不会出现的值。
// 那never在实际开发中到底有什么作用? 这里笔者原汁原味照搬尤雨溪的经典解释来做第一个例子
第一个例子,当你有一个 union type:
interface Foo {
type: 'foo'
}
interface Bar {
type: 'bar'
}
type All = Foo | Bar
在 switch 当中判断 type,TS是可以收窄类型的 (discriminated union):
function handleValue(val: All) {
switch (val.type) {
case 'foo':
// 这里 val 被收窄为 Foo
break
case 'bar':
// val 在这里是 Bar
break
default:
// val 在这里是 never
const exhaustiveCheck: never = val
break
}
}
注意在 default 里面我们把被收窄为 never 的 val 赋值给一个显式声明为 never 的变量。
如果一切逻辑正确,那么这里应该能够编译通过。但是假如后来有一天你的同事改了 All 的类型:
type All = Foo | Bar | Baz
然而他忘记了在 handleValue 里面加上针对 Baz 的处理逻辑,
这个时候在 default branch 里面 val 会被收窄为 Baz,导致无法赋值给 never,产生一个编译错误。
所以通过这个办法,你可以确保 handleValue 总是穷尽 (exhaust) 了所有 All 的可能类型。
第二个用法 返回值为 never 的函数可以是抛出异常的情况
function error(message: string): never {
throw new Error(message);
}
第三个用法 返回值为 never 的函数可以是无法被执行到的终止点的情况
function loop(): never {
while (true) {}
}
void
interface IProps {
onOK: () => void
}
void 和 undefined 功能高度类似,但void表示对函数的返回值并不在意或该方法并无返回值
enum
笔者认为ts中的enum是一个很有趣的枚举类型,它的底层就是number的实现
1.普通枚举
enum Color {
Red,
Green,
Blue
};
let c: Color = Color.Blue;
console.log(c); // 2
2.字符串枚举
enum Color {
Red = 'red',
Green = 'not red',
};
3.异构枚举 / 有时也叫混合枚举
enum Color {
Red = 'red',
Num = 2,
};
<第一个坑>
enum Color {
A, // 0
B, // 1
C = 20, // 20
D, // 21
E = 100, // 100
F, // 101
}
若初始化有部分赋值,那么后续成员的值为上一个成员的值加1
<第二个坑> 这个坑是第一个坑的延展,稍不仔细就会上当!
const getValue = () => {
return 23
}
enum List {
A = getValue(),
B = 24, // 此处必须要初始化值,不然编译不通过
C
}
console.log(List.A) // 23
console.log(List.B) // 24
console.log(List.C) // 25
如果某个属性的值是计算出来的,那么它后面一位的成员必须要初始化值。
否则将会 Enum member must have initializer.
泛型
笔者理解的泛型很白话:先不指定具体类型,通过传入的参数类型来得到具体类型 我们从下述的 filter-demo 入手,探索一下为什么一定需要泛型
- 泛型的基础样式
function fun<T>(args: T): T {
return args
}
如果没接触过,是不是会觉得有点懵? 没关系!我们直接从业务角度深入——
1.刚开始的需求:过滤数字类型的数组
declare function filter(
array: number[],
fn: (item: unknown) => boolean
) : number[];
2.产品改了需求:还要过滤一些字符串 string[]
彳亍,那就利用函数的重载, 加一个声明, 虽然笨了点,但是很好理解
declare function filter(
array: string[],
fn: (item: unknown) => boolean
): string[];
declare function filter(
array: number[],
fn: (item: unknown) => boolean
): number[];
3.产品又来了! 这次还要过滤 boolean[]、object[] ..........
这个时候如果还是选择重载,将会大大提升工作量,代码也会变得越来越累赘,这个时候泛型就出场了,
它从实现上来说更像是一种方法,通过你的传参来定义类型,改造如下:
declare function filter<T>(
array: T[],
fn: (item: unknown) => boolean
): T[];
泛型中的可以是任意,但是大部分偏好为 T、U、S 等,
当我们把泛型理解为一种方法实现后,那么我们便很自然的联想到:方法有多个参数、默认值,泛型也可以
type Foo<T, U = string> = { // 多参数、默认值
foo: Array<T> // 可以传递
bar: U
}
type A = Foo<number> // type A = { foo: number[]; bar: string; }
type B = Foo<number, number> // type B = { foo: number[]; bar: number; }
既然是“函数”,那也会有“限制”,下文列举一些稍微常见的约束
1. extends: 限制 T 必须至少是一个 XXX 的类型
type dayOff<T extends HTMLElement = HTMLElement> = {
where: T,
name: string
}
2. Readonly<T>: 构造一个所有属性为readonly,这意味着无法重新分配所构造类型的属性。
interface Eat {
food: string;
}
const todo: Readonly<Eat> = {
food: "meat beef milk",
};
todo.food = "no food"; // Cannot assign to 'title' because it is a read-only property.
3. Pick<T,K>: 从T中挑选出一些K属性
interface Todo {
name: string;
job: string;
work: boolean;
type TodoPreview = Pick<Todo, "name" | "work">;
const todo: TodoPreview = {
name: "jiawen",
work: true,
};
todo;
4. Omit<T, K>: 结合了 T 和 K 并忽略对象类型中 K 来构造类型。
interface Todo {
name: string;
job: string;
work: boolean;
}
type TodoPreview = Omit<Todo, "work">;
const todo: TodoPreview = {
name: "jiawen",
job: 'job',
};
5.Record: 约束 定义键类型为 Keys、值类型为 Values 的对象类型。
enum Num {
A = 10001,
B = 10002,
C = 10003
}
const NumMap: Record<Num, string> = {
[Num.A]: 'this is A',
[Num.B]: 'this is B'
}
// 类型 "{ 10001: string; 10002: string; }" 中缺少属性 "10003",
// 但类型 "Record<ErrorCodes, string>" 中需要该属性,所以我们还可以通过Record来做全面性检查
keyof 关键字可以用来获取一个对象类型的所有 key 类型
type User = {
id: string