二叉树操作集锦
开学了,找工作也正式拉开了序幕,每天光自己看书,也很没劲,和大家一起分享分享,交流一下笔试面试过程中的各种算法题目,如有问题,欢迎指正,希望大家一起进步。。。
下面是对数据结构二叉树的一些基本操作,可能在面试中都会涉及到。我们都知道二叉树的定义本身就是一种递归定义,所以对树的大部分操作都可以通过递归的方式进行,但递归不是万能的,因为递归的本身是一件很浪费内存资源的操作,所以在选择算法的时候要权衡各种因素,选取最合理的算法。下图Fig 1 是下面代码中举例会用到的图:
Fig 1
在本文中,所讨论的二叉树采取以下的定义方式:
templatestruct BiNode{ Type data; BiNode *left; BiNode *right;};
下面就是各种对二叉树的操作,也行大家在各种面试书中看过了,这些题目在面试中可能会经常出现,所以要秒杀它们。。。
1.二叉树的创建
下面的创建是采用递归的方式进行创建,节点的内容为字符。节点的创建方式是先序的方式,先创建根节点,然后是左子树,最后是右子树。
/** *Create Binary Tree */ BiNode<char> * CreateBiTree() { BiNode<char> *root; char data; cin>>data; if(data == '$') return NULL; root = new BiNode<char>; root->data = data; root->left = CreateBiTree(); root->right = CreateBiTree(); return root; }
2.二叉树的各种遍历
下面的算法是二叉树的各种遍历,包括先序,中序,层次遍历,其中有非递归和递归的算法,关于后序遍历这里没有列举,因为后序的非递归相对比较复杂,每个节点要进出栈两次,在面试的过程中一般面试官不是变态的话,不会考后序的非递归算法的。
2.1 先序遍历
下面是先序遍历的递归算法:
/** * recursively pre-order traverse the binary tree * 先序遍历递归算法 */ template <typename Type> void PreOrder( BiNode<Type> *root ) { if(root == NULL) return; cout<<root->data<<endl; PreOrder(root->left); PreOrder(root->right); }
下面是先序遍历的非递归算法,非递归的思想就是通过栈来模拟递归的过程,非递归的先序遍历就是在每访问一个节点后,讲该节点的右孩子压入栈,然后再将左孩子压栈。
/** * non-recursively pre-order traverse the binary tree * 先序遍历非递归算法 */ template <typename Type> void PreOrder_NonRecursive( BiNode<Type> *root ) { if(root == NULL) return; stack<BiNode<Type> *> nodeStack; nodeStack.push(root); while(!nodeStack.empty()) { BiNode<Type> *node = nodeStack.top(); nodeStack.pop(); cout<<node->data<<endl; if(node->right) nodeStack.push(node->right); if(node->left) nodeStack.push(node->left); } }
2.2 中序遍历
下面是中序遍历的递归算法:
/** * recursively in-order traverse the binary tree * 中序遍历递归算法 */ template <typename Type> void InOrder( BiNode<Type> *root ) { if(root == NULL) return; InOrder(root->left); cout<<root->data<<endl; InOrder(root->right); }
下面是中序遍历的非递归算法,中序遍历非递归的思想就是将节点的沿着左子树的方向一直入栈,直到左子树为空,然后弹出栈里的元素进行访问,如果该节点存在右子树,则重复执行上述操作。
/** * non-recursively in-order traverse the binary tree * 中序遍历非递归算法 */ template <typename Type> void InOrder_NonRecursive( BiNode<Type> *root ) { if (root == NULL) return; stack<BiNode<Type> *> nodeStack; BiNode<Type> *node = root; while (node != NULL || !nodeStack.empty()) { if (node != NULL) { nodeStack.push(node); node = node->left; } else { node = nodeStack.top(); nodeStack.pop(); cout<<node->data<<endl; node = node->right; } } }
2.3 层次遍历
二叉树的层次遍历就是按照节点的深度从上往下,从左往右依次访问树中的每一个节点。
下面这种方法是通过队列来完成的,首先将根节点入队列,然后重复进行如下操作:读取队头节点元素,并将节点的左右孩子写入队列,直到队列为空。
/** * level order traverse the binary tree * method 1 */ template <typename Type> void LevelOrder_1( BiNode<Type> *root ) { if (root == NULL) return; queue<BiNode<Type> *> nodeQueue; nodeQueue.push(root); while (!nodeQueue.empty()) { BiNode<Type> *node = nodeQueue.front(); nodeQueue.pop(); cout<<node->data<<" "; if(node->left) nodeQueue.push(node->left); if(node->right) nodeQueue.push(node->right); } }
上面的算法不能清晰的按层次单独的打印二叉树的每层数据,下面有二种方法可以代替这种方法。
/** * level order traverse the binary tree * method 2 */ template <typename Type> void LevelOrder_2( BiNode<Type> *root ) { if (root == NULL) return; //GetBinTreeHeight()函数用于获取二叉树的高度,后面会有介绍 for (int i = 1; i <= GetBinTreeHeight(root); ++i) { PrintKthLevelOrder(root, i); cout<<endl; } } /** * print the k(th) level node of binary tree * 打印二叉树的第K层的节点 * * @param k the level, its value must be 1 <= k <= tree height */ template <typename Type> void PrintKthLevelOrder( BiNode<Type> *root, int k) { if (root == NULL) return; if(k == 1) { cout<<root->data<<" "; return; } PrintKthLevelOrder(root->left, k - 1); PrintKthLevelOrder(root->right, k - 1); }
上面的代码完成了独立的遍历每一层的节点。但我们会发现,遍历每一层节点都会从根节点往下开始,这样会存在大量的重复操作,一般的面试官是不会满意这种算法的。下面就是通过STL vector来存储遍历的节点,过程和通过队列访问类型,但用了两个index来标识每一层。具体可以参考编程之美3.10节。下面是代码:
/** * level order traverse the binary tree * method 3 */ template <typename Type> void LevelOrder_3( BiNode<Type> *root ) { if (root == NULL) return; vector<BiNode<Type> *> nodeVec; nodeVec.push_back(root); int cur, last; cur = 0, last = 1; while(cur < nodeVec.size()) { cout<<nodeVec[cur]->data<<" "; if(nodeVec[cur]->left != NULL) nodeVec.push_back(nodeVec[cur]->left); if(nodeVec[cur]->right != NULL) nodeVec.push_back(nodeVec[cur]->right); ++cur; if (cur == last) { cur = last; last = nodeVec.size(); cout<<endl; } } }
3.二叉树的高度
二叉树的高度可以通过后序遍历的思想,递归的统计节点的左子树和右子树的高度,然后取左右子树高度的最高值,然后加1,就是该层节点的高度。代码如下:
/** * calculate the height of binary tree */ template <typename Type> int GetBinTreeHeight( BiNode<Type> *root) { if (root == NULL) return 0; int lHeight = GetBinTreeHeight(root->left); int rHeight = GetBinTreeHeight(root->right); if(lHeight < rHeight) return rHeight + 1; return lHeight + 1; }
4.二叉树第K层节点的个数
也是通过后序遍历的思想,分别求节点左右子树在第K层的节点个数,然后求和。这里对传入的k,随着递归深度的加深,逐渐减1,直到k为1。
/** * calculate the node counts in k(th) level * * @param k the level, its value must be 1 <= k <= tree height */ template <typename Type> int GetNodeCountsKthLevel( BiNode<Type> *root, int k) { //检测k否超过二叉树的高度 if (root == NULL || k < 1 || k > GetBinTreeHeight(root)) return 0; if(k == 1) return 1; return GetNodeCountsKthLevel(root->left, k - 1) \ + GetNodeCountsKthLevel(root->right, k - 1); }
这里为了增强代码的鲁棒性,加入了对传入参数k的合法性的检验k本身的取值范围应该是:1 =< k <= tree height
5.叶子节点的个数
和前面的道理一样,在二叉树的操作中,递归才是王道。。。
/** * calculate the leaf node counts */ template <typename Type> int GetLeavesCounts( BiNode<Type> *root) { if (root == NULL) return 0; if(root->left == NULL && root->right == NULL) return 1; return GetLeavesCounts(root->left) + GetLeavesCounts(root->right); }
6.二叉树节点的个数
template <typename Type> int GetNodeCounts( BiNode<Type> *root) { if(root == NULL) return 0; return GetNodeCounts(root->left) + GetNodeCounts(root->right) + 1; }
也可以通过传入参数,通过先序遍历的思想,每访问一个节点就将计数器加1,直到遍历完所有节点为止。
7.二叉排序树转换成排序的双向链表
这个已近在前面的博客中写过,详见: http://blog.csdn.net/anonymalias/article/details/9204825
8.二叉树的子结构
二叉树的子结构的定义是:一个二叉树为另一个二叉树的子集,如下图所示:
Fig 2 B为A的一个子结构
那么对于这个题目的解题思路是:在A中查找与B根节点相同的节点X,找到后将该节点X的左右子树与B的左右子树依次比较,如果B的所有节点都在X的左右子树中,那么就认为B是A的子结构,如果B的所有节点不都在X的左右子树中,那么在A中继续查找另外一个X节点,直到结束。下面是代码:
/** * judge the binary tree 'rootB' is a substructure of 'rootA'or not */ template <typename Type> bool IsSubStruct(BiNode<Type> *rootA, BiNode<Type> *rootB) { if (rootA == NULL || rootB == NULL) return false; bool result = false; if (rootA->data == rootB->data) result = ISSameStruct(rootA, rootB); if(!result) result = IsSubStruct(rootA->left, rootB); if(!result) result = IsSubStruct(rootA->right, rootB); return result; } //用于判断二叉树B是否是A开始的一部分 template<typename Type> bool ISSameStruct(BiNode<Type> *rootA, BiNode<Type> *rootB) { if(rootB == NULL) return true; if(rootA == NULL) return false; if(rootA->data != rootB->data) return false; return ISSameStruct(rootA->left, rootB->left) && ISSameStruct(rootA->right, rootB->right); }
8.二叉树的镜像
二叉树镜像的概念就是左右子树交换,所以判断起来也很简单,代码如下:
/** * judge the binary tree 'rootA' is a mirror of 'rootB' or not */ template<typename Type> bool ISMirror(BiNode<Type> *rootA, BiNode<Type> *rootB) { if(rootA == NULL && rootB == NULL) return true; if(rootA == NULL || rootB == NULL) return false; if(rootA->data != rootB->data) return false; return ISMirror(rootA->left, rootB->right) && ISMirror(rootA->right, rootB->left); }
如果将ISMirror递归部分换成如下的代码,就是判断两棵二叉树是否相同。
return ISMirror(rootA-<left, rootB-<left) && ISMirror(rootA-<right, rootB-<right);
9.平衡二叉树的判断
我们都知道平衡二叉树的定义:空树或左右子树的高度差不超过1,且左右子树也都是平衡二叉树。代码如下:
/** * judge the binary tree whether it is a balanced tree */ template <typename Type> bool IsBalanced(BiNode<Type> *root) { int height = 0; return SubIsBalanced(root, height); } template <typename Type> bool SubIsBalanced(BiNode<Type> *root, int &height) { if(root == NULL) { height = 0; return true; } int lH, rH; int result = SubIsBalanced(root->left, lH) && SubIsBalanced(root->right, rH); if (result) { if(lH - rH <= 1 && lH - rH >= -1) { height = (lH > rH ? lH + 1 : rH + 1); return true; } } return false; }
10.完全二叉树的判断
完全二叉树的定义如下:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。判断一棵树是否是完全二叉树,我见过最简单的方法是:通过广度遍历即层次遍历的思想,将各个节点入队列,对于存在空洞的节点( 左右孩子的节点存在NULL),把它的两个孩子也入队列,当访问到队列中为NULL的节点,根据完全二叉树的定义,此时二叉树已经结束,即队列中的其他元素全部为NULL,否则该树不是完全二叉树。代码如下:
/** * judge the binary tree whether it is a balanced tree */ template <typename Type> bool IsBalanced(BiNode<Type> *root) { int height = 0; return SubIsBalanced(root, height); } template <typename Type> bool SubIsBalanced(BiNode<Type> *root, int &height) { if(root == NULL) { height = 0; return true; } int lH, rH; int result = SubIsBalanced(root->left, lH) && SubIsBalanced(root->right, rH); if (result) { if(lH - rH <= 1 && lH - rH >= -1) { height = (lH > rH ? lH + 1 : rH + 1); return true; } } return false; }
11.满二叉树的判断
满二叉树的判断相对比较简单,可以通过判断每个节点的左右子树的高度是否相同来实现,满二叉树的所以节点的左右子树的高度都是一样的。代码如下:
/** * judge the binary tree whether it is a completed tree */ template <typename Type> bool IsCompletedBiTree(BiNode<Type> *root) { if(root == NULL) return true; queue<BiNode<Type> *> nodeQue; nodeQue.push(root); while(!nodeQue.empty()) { BiNode<Type> *node = nodeQue.front(); nodeQue.pop(); if (node == NULL) { while (!nodeQue.empty()) { if(nodeQue.front() != NULL) return false; nodeQue.pop(); } return true; } nodeQue.push(node->left); nodeQue.push(node->right); } //实际上不会执行到这一步 return true; }
12.重建二叉树
根据二叉树的先序和中序遍历的结果(不含有重复的节点),重建此二叉树,该题的的解决思路也是通过二叉树递归定义的思想。我们知道二叉树先序遍历的一个节点,在中序遍历中会把以该节点为根的二叉树分为左右两部分,根据这点,可以递归的重建二叉树,具体代码如下:
/** * rebuild the binary tree */ template <typename Type> BiNode<Type> * RebuildBiTree(const Type *pre, const Type *in, int len) { if(pre == NULL || in == NULL || len <= 0) return NULL; BiNode<Type> * root = new BiNode<Type>; root->data = pre[0]; int index; for (index = 0; index < len; ++index) { if (in[index] == pre[0]) break; } //can not find the 'pre[0]' in the 'in[]' if(index == len) return NULL; root->left = RebuildBiTree(pre + 1, in, index); root->right = RebuildBiTree(pre + index + 1, in + index + 1, len - index - 1); return root; }
13.判断序列是否是二叉排序树的后序遍历序列
我们都知道二叉排序树的中序遍历的结果是一个递增序列,后序遍历序列最后的元素是根节点,通过最后的元素将遍历序列分割成两部分,左半部分都小于根节点的值,右半部分都大于该节点的值,如果不能分成这两部分,那么该序列就不是二叉排序树的后序遍历序列。代码如下:
/** * judge the serial is post-order traversal of binary search tree */ template <typename Type> bool IsBSTPostOrder(const Type *post, int len) { if(post == NULL || len <= 0) return false; int index; //查找小于根节点的左子树节点 for (index = 0; index < len - 1; ++index) { if(post[index] > post[len - 1]) break; } //判断剩下的节点是否都为右子树的节点,即是否都大于根节点的值 for (int i = index; i < len - 1; ++i) { if(post[i] < post[len - 1]) return false; } bool result = true; if(index > 0) result = IsBSTPostOrder(post, index); if(result && index < len - 1) result = IsBSTPostOrder(post + index, len - index - 1); return result; }
就先写这么多吧,后面还会继续添加,累死了。。。
Sept 2nd - 3rd, 2013 @lab