上一页 1 2 3 4 5 6 7 8 ··· 20 下一页
摘要: 为了完整地展示线性代数,我们必须包含复数。即使矩阵是实的,特征值和特征向量也经常会是复数。 1. 虚数回顾 虚数由实部和虚部组成,虚数相加时实部和实部相加,虚部和虚部相加,虚数相乘时则利用 $i^2= 1$。 在虚平面,虚数 $3+2i$ 是位于坐标 $(3, 2)$ 的一个点。复数 $z=a+bi 阅读全文
posted @ 2019-11-29 14:03 seniusen 阅读(12994) 评论(0) 推荐(0) 编辑
摘要: 1. 矩阵范数 我们怎么来衡量一个矩阵的大小呢?针对一个向量,它的长度是 $||\boldsymbol x||$。针对一个矩阵,它的范数是 $||A||$。有时候我们会用向量的范数来替代长度这个说法,但对于矩阵我们只说范数。有很多方式来定义矩阵的范数,我们来看看所有范数的的要求然后选择其中一个。 F 阅读全文
posted @ 2019-11-29 13:59 seniusen 阅读(3437) 评论(0) 推荐(0) 编辑
摘要: 这部分我们从有限维扩展到无限维,在无限维空间中线性代数依然有效。首先,我们来回顾一下,我们一开始是以向量、点积和线性组合进行展开的。现在我们开始将这些基本的概念转化到无限维的情况,然后再继续深入探索。 一个向量有无限多的元素是什么意思呢?有两种答案,都非常好。 向量变成 $\boldsymbol v 阅读全文
posted @ 2019-11-26 22:07 seniusen 阅读(1108) 评论(0) 推荐(0) 编辑
摘要: 这一部分我们关注正的矩阵,矩阵中的每个元素都大于零。一个重要的事实: 最大的特征值是正的实数,其对应的特征向量也如是 。最大的特征值控制着矩阵 $A$ 的乘方。 假设我们用 $A$ 连续乘以一个正的向量 $\boldsymbol u_0=(a, 1 a)$, $k$ 步后我们得到 $A^k\bold 阅读全文
posted @ 2019-11-26 22:05 seniusen 阅读(3276) 评论(0) 推荐(0) 编辑
摘要: 1. 图 一个图由一系列节点以及连接它们的边组成, 关联矩阵 (incidence matrix)则告诉我们 $n$ 个顶点是怎么被 $m$ 条边连接的。关联矩阵中的每个元素都是 0,1 或者 1,在消元过程中这也依然成立,所有的主元和乘数都是 $\pm1$。因此分解 $A=LU$ 也只包含 0,1 阅读全文
posted @ 2019-11-26 22:03 seniusen 阅读(737) 评论(0) 推荐(0) 编辑
摘要: 这部分我们通过选择更好的基底来产生更好的矩阵。当我们的目标是对角化矩阵时,一个选择可以是一组特征向量基底,另外一个选择可以是两组基底,输入基底和输出基底是不一样的。这些左右奇异向量是矩阵四个基本子空间中标准正交的基向量,它们来自于 SVD。 事实上,所有对 $A$ 的分解都可以看作是一个基的改变。在 阅读全文
posted @ 2019-11-26 22:00 seniusen 阅读(852) 评论(0) 推荐(0) 编辑
摘要: 1. 恒等变换 现在让我们来找到这个特殊无聊的变换 $T(\boldsymbol v)=\boldsymbol v$ 对应的矩阵。这个恒等变换什么都没有做,对应的矩阵是恒等矩阵,如果输出的基和输入的基一样的话。 如果 $T(\boldsymbol v_j)=\boldsymbol v_j = \bo 阅读全文
posted @ 2019-11-24 22:50 seniusen 阅读(2589) 评论(0) 推荐(0) 编辑
摘要: 1. 线性变换的概念 当一个矩阵 $A$ 乘以一个向量 $\boldsymbol v$ 时,它将 $\boldsymbol v$ 变换 到另一个向量 $A\boldsymbol v$。进来的是 $\boldsymbol v$,出去的是 $T( \boldsymbol v) = A\boldsymbo 阅读全文
posted @ 2019-11-24 22:46 seniusen 阅读(3450) 评论(1) 推荐(0) 编辑
摘要: SVD 分解是线性代数的一大亮点。 1. SVD 分解 $A$ 是任意的 $m×n$ 矩阵,它的秩为 $r$,我们要对其进行对角化,但不是通过 $S^{ 1}A S$。$S$ 中的特征向量有三个大问题:它们通常不是正交的;并不总是有足够的特征向量;$Ax=\lambda x$ 需要 $A$ 是一个方 阅读全文
posted @ 2019-11-24 22:45 seniusen 阅读(2365) 评论(0) 推荐(0) 编辑
摘要: 当 $A$ 有足够的特征向量的时候,我们有 $S^{ 1}AS=\Lambda$。在这部分,$S$ 仍然是最好的选择,但现在我们允许任意可逆矩阵 $M$,矩阵 $A$ 和 $M^{ 1}AM$ 称为 相似矩阵 ,并且不管选择哪个 $M$,特征值都保持不变。 1. 相似矩阵 假设 $M$ 是任意的可逆 阅读全文
posted @ 2019-11-24 10:11 seniusen 阅读(3263) 评论(0) 推荐(0) 编辑
上一页 1 2 3 4 5 6 7 8 ··· 20 下一页