TensorFlow 同时调用多个预训练好的模型
在某些任务中,我们需要针对不同的情况训练多个不同的神经网络模型,这时候,在测试阶段,我们就需要调用多个预训练好的模型分别来进行预测。
弄明白了如何调用单个模型,其实调用多个模型也就顺理成章。我们只需要建立多个图,然后每个图导入一个模型,再针对每个图创建一个会话,分别进行预测即可。
import tensorflow as tf
import numpy as np
# 建立两个 graph
g1 = tf.Graph()
g2 = tf.Graph()
# 为每个 graph 建创建一个 session
sess1 = tf.Session(graph=g1)
sess2 = tf.Session(graph=g2)
X_1 = None
tst_1 = None
yhat_1 = None
X_2 = None
tst_2 = None
yhat_2 = None
def load_model(sess):
"""
Loading the pre-trained model and parameters.
"""
global X_1, tst_1, yhat_1
with sess1.as_default():
with sess1.graph.as_default():
modelpath = r'F:/resnet/model/new0.25-0.35/'
saver = tf.train.import_meta_graph(modelpath + 'model-10.meta')
saver.restore(sess1, tf.train.latest_checkpoint(modelpath))
graph = tf.get_default_graph()
X_1 = graph.get_tensor_by_name("X:0")
tst_1 = graph.get_tensor_by_name("tst:0")
yhat_1 = graph.get_tensor_by_name("tanh:0")
print('Successfully load the model_1!')
def load_model_2():
"""
Loading the pre-trained model and parameters.
"""
global X_2, tst_2, yhat_2
with sess2.as_default():
with sess2.graph.as_default():
modelpath = r'F:/resnet/model/new0.25-0.352/'
saver = tf.train.import_meta_graph(modelpath + 'model-10.meta')
saver.restore(sess2, tf.train.latest_checkpoint(modelpath))
graph = tf.get_default_graph()
X_2 = graph.get_tensor_by_name("X:0")
tst_2 = graph.get_tensor_by_name("tst:0")
yhat_2 = graph.get_tensor_by_name("tanh:0")
print('Successfully load the model_2!')
def test_1(txtdata):
"""
Convert data to Numpy array which has a shape of (-1, 41, 41, 41, 3).
Test a single axample.
Arg:
txtdata: Array in C.
Returns:
The normal of a face.
"""
global X_1, tst_1, yhat_1
data = np.array(txtdata)
data = data.reshape(-1, 41, 41, 41, 3)
output = sess1.run(yhat_1, feed_dict={X_1: data, tst_1: True}) # (100, 3)
output = output.reshape(-1, 1)
ret = output.tolist()
return ret
def test_2(txtdata):
"""
Convert data to Numpy array which has a shape of (-1, 41, 41, 41, 3).
Test a single axample.
Arg:
txtdata: Array in C.
Returns:
The normal of a face.
"""
global X_2, tst_2, yhat_2
data = np.array(txtdata)
data = data.reshape(-1, 41, 41, 41, 3)
output = sess2.run(yhat_2, feed_dict={X_2: data, tst_2: True}) # (100, 3)
output = output.reshape(-1, 1)
ret = output.tolist()
return ret
最后,本程序只是为了说明问题,抛砖引玉,代码有很多冗余之处,不要模仿!
获取更多精彩,请关注「seniusen」!