动态规划之——莱文斯坦距离和最长公共子序列
1. 如何衡量字符串的相似性
如何量化两个字符串之间的相似性呢?我们可以用编辑距离,也就是将一个字符串通过增、删、替换字符转化成另一个字符串需要的最少编辑次数。编辑距离越小,说明两个字符串越相似。
其中,莱文斯坦距离允许增、删和替换操作,表示两个字符串差异的大小;最长公共子序列只允许增删操作,表示两个字符串相似程度的大小。下面的例子中莱文斯坦距离为 3,最长公共子序列为 4。
2. 莱文斯坦距离
对于两个字符串 s 和 t,当 \(s[i] == t[j]\) 时,我们继续考察 s[i+1] 和 t[j+1];当 \(s[i] != t[j]\) 时,我们有下述选择:
- 删除 s[i] 或者在 t 中增加一个与 s[i] 相同的字符, 继续考察 s[i+1] 和 t[j];
- 删除 t[j] 或者在 s 中增加一个与 t[j] 相同的字符, 继续考察 s[i] 和 t[j+1];
- 替换 s[i] 为 t[j] 或者 t[j] 为 s[i], 继续考察 s[i+1] 和 t[j+1];
我们定义 edist[i][j] 表示子串 s[0, i] 与 t[0, j] 的最小编辑距离,那么由上面的分析可知,edist[i][j] 可以由 edist[i-1][j]、edist[i][j-1] 和 edist[i-1][j-1] 这三个状态转化而来。
当 edist[i][j] 由 edist[i-1][j] 转化而来的时候,我们只能通过删除 s[i] 或者在 t 中增加一个与 s[i] 相同的字符,那么编辑距离一定增 1。
当 edist[i][j] 由 edist[i][j-1] 转化而来的时候,我们只能通过删除 t[j] 或者在 s 中增加一个与 t[j] 相同的字符,那么编辑距离一定增 1。
当 edist[i][j] 由 edist[i-1][j-1] 转化而来的时候,如果 \(s[i] == t[j]\),编辑距离保持不变;如果 \(s[i] != t[j]\),我们只能替换 s[i] 为 t[j] 或者 t[j] 为 s[i],编辑距增 1。
最终的 edist[i][j] 取这三者中最小的一个即可,所以我们有:
import numpy as np
s = 'mitcmu'
t = 'mtacnu'
def lwst_edit_dis(s, t):
m = len(s)
n = len(t)
edist = np.ones((m, n), 'uint8')
# 初始化 s[0] 与 t[0, i] 的编辑距离
for i in range(0, n):
if s[0] == t[i]:
edist[0][i] = i
elif i != 0:
edist[0][i] = edist[0][i-1] + 1
else:
edist[0][i] = 1
# 初始化 s[0, i] 与 t[0] 的编辑距离
for i in range(0, m):
if s[i] == t[0]:
edist[i][0] = i
elif i != 0:
edist[i][0] = edist[i-1][0] + 1
else:
edist[i][0] = 1
for i in range(1, m):
for j in range(1, n):
temp = min(edist[i-1][j], edist[i][j-1]) + 1
if s[i] == t[j]:
edist[i][j] = min(temp, edist[i-1][j-1])
else:
edist[i][j] = min(temp, edist[i-1][j-1]+1)
print(edist)
return edist[m-1][n-1]
print(lwst_edit_dis(s, t))
3. 最长公共子序列
最长公共子序列只允许增删两种操作。对于两个字符串 s 和 t,当 \(s[i] == t[j]\) 时,最长公共子序列长度加 1,我们继续考察 s[i+1] 和 t[j+1];当 \(s[i] != t[j]\) 时,最长公共子序列长度不变,我们有下述选择:
- 删除 s[i] 或者在 t 中增加一个与 s[i] 相同的字符, 继续考察 s[i+1] 和 t[j];
- 删除 t[j] 或者在 s 中增加一个与 t[j] 相同的字符, 继续考察 s[i] 和 t[j+1];
我们定义 lcs[i][j] 表示子串 s[0, i] 与 t[0, j] 的最长公共子序列长度,那么由上面的分析可知,lcs[i][j] 可以由 lcs[i-1][j]、lcs[i][j-1] 和 lcs[i-1][j-1] 这三个状态转化而来。
当 lcs[i][j] 由 lcs[i-1][j] 转化而来的时候,我们只能通过删除 s[i] 或者在 t 中增加一个与 s[i] 相同的字符,最长公共子序列长度保持不变。
当 lcs[i][j] 由 lcs[i][j-1] 转化而来的时候,我们只能通过删除 t[j] 或者在 s 中增加一个与 t[j] 相同的字符,最长公共子序列长度保持不变。
当 lcs[i][j] 由 lcs[i-1][j-1] 转化而来的时候,如果 \(s[i] == t[j]\),最长公共子序列长度加 1;如果 \(s[i] != t[j]\),我们只能替换 s[i] 为 t[j] 或者 t[j] 为 s[i],最长公共子序列长度保持不变。
最终的 lcs[i][j] 取这三者中最大的一个即可,所以我们有:
import numpy as np
s = 'mitcmu'
t = 'mtacnu'
def longest_commom_subsequence(s, t):
m = len(s)
n = len(t)
lcs = np.ones((m, n), 'uint8')
for i in range(0, n):
if s[0] == t[i]:
lcs[0][i] = 1
elif i != 0:
lcs[0][i] = lcs[0][i-1]
else:
lcs[0][i] = 0
for i in range(0, m):
if s[i] == t[0]:
lcs[i][0] = 1
elif i != 0:
lcs[i][0] = lcs[i-1][0]
else:
lcs[i][0] = 0
for i in range(1, m):
for j in range(1, n):
temp = max(lcs[i-1][j], lcs[i][j-1])
if s[i] == t[j]:
lcs[i][j] = max(temp, lcs[i-1][j-1]+1)
else:
lcs[i][j] = max(temp, lcs[i-1][j-1])
print(lcs)
return lcs[m-1][n-1]
print(longest_commom_subsequence(s, t))
获取更多精彩,请关注「seniusen」!