随笔分类 - 论文笔记
摘要:论文简介 QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information [论文地址][https://arxiv.org/abs/2103.05399] [代码
阅读全文
摘要:1. 摘要 作者设计了一个 QRU3D 块来对高光谱图像进行去噪,其中的 3D 卷积负责提取空间和光谱的结构相关性,而近似循环池化函数则用来捕获光谱方向的全局相关性。 此外,作者还引入了交替方向结构,以消除单向的因果关系,并且无需额外的计算成本。 2. 方法介绍 2.1. QRU3D QRU3D 块
阅读全文
摘要:1. 摘要 Noise2Noise (N2N) 可以利用一对独立的噪声图片来训练去噪模型,在这里,作者更进一步提出了一个策略 Noise2Void (N2V) ,只利用噪声图像即可。 因此 N2V 可以被应用在一些其它方法不能应用的领域,特别是生物医学图像,在这里干净或者噪声目标图像经常是不可能获取
阅读全文
摘要:1. 摘要 大量的高光谱数据收集起来比较困难,所以作者提出了一种自监督策略,可以从一张退化图像构建出训练数据来训练一个去噪网络而不需要任何干净数据。 另外,高光谱图像的光谱波段数一般比较多,计算负载较大,因此作者引入深度可分离卷积来实施去噪,既能捕获高光谱图像的结构先验又能减小模型复杂性。 2. 方
阅读全文
摘要:1. 摘要 作者提出了一个前所未有高效的新奇网络结构,称之为 CondenseNet,该结构结合了密集连接性和可学习的分组卷积模块。 密集连接性有利于网络中的特征复用,而可学习的分组卷积模块则可以移除多余的特征复用之间的连接。在测试的时候,训练好的模型可以使用标准的分组卷积来实现,在实际中计算非常高
阅读全文
摘要:1. 摘要 最近,神经网络的架构设计都是基于计算复杂度的间接度量,比如 FLOPs。然而,直接的度量比如运行速度,其实也会依赖于内存访问和平台特性等其它因素。 因此本文建议直接在目标平台上用直接度量进行测试。基于一系列控制条件实验,作者提出了设计高效网络结构的一些实用指导思想,并据此提出了一个称之为
阅读全文
摘要:1. 摘要 作者介绍了一种计算非常高效的 CNN 结构称之为 ShuffleNet,它是专门为计算资源非常有限的移动设备设计的。 这种新的结构主要用到了两种操作:分组点卷积(pointwise group convolution )和通道打乱(channel shuffle),这可以极大降低计算代价
阅读全文
摘要:1. 摘要 基于网络架构搜索和 NetAdapt 算法,作者提出了新一代的 MobileNets,并通过一些先进的结构对其进行了改进。 作者发布了两个模型 MobileNetV3 Large 和 MobileNetV3 Small 分别应用于资源较多和较少的场景,这些模型也可以被调整并应用到目标检测
阅读全文
摘要:1. 摘要 作者提出了一个新的网络架构 MobileNetV2,该架构基于反转残差结构,其中的跳跃连接位于较瘦的瓶颈层之间。中间的扩展层则利用轻量级的深度卷积来提取特征引入非线性,而且,为了维持网络的表示能力作者去除了较窄层的非线性激活函数。 2. 讨论和直觉 2.1. 深度可分离卷积 Mobile
阅读全文
摘要:1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络。 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以便于网络设计者针对自己任务的限制来选择大小合适的模型。 2. 相关工作 设计轻量级的高效模型大致可以
阅读全文
摘要:1. 摘要 最近关于深度卷积神经网络的研究都集中在提高准确率上,对于准确率在同一个水平的网络,更小的网络结构至少有三个优点:1. 在分布式训练的时候需要更少的跨服务器通信;2. 从云端导出新模型到自动驾驶汽车上需要更小的带宽;3. 在 FPGA 等其它硬件内存有限的情况下更容易部署。 作者提出了一个
阅读全文
摘要:1. 摘要 卷积和循环神经网络中的操作都是一次处理一个局部邻域,在这篇文章中,作者提出了一个非局部的操作来作为捕获远程依赖的通用模块。 受计算机视觉中经典的非局部均值方法启发,我们的非局部操作计算某一位置的响应为所有位置特征的加权和。而且,这个模块可以插入到许多计算机视觉网络架构中去。 2. 介绍
阅读全文
摘要:1. 摘要 注意力机制是深度神经网络的一个设计趋势,其在各种计算机视觉任务中都表现突出。但是,应用到图像超分辨领域的注意力模型大都没有考虑超分辨和其它高层计算机视觉问题的天然不同。 作者提出了一个新的注意力模型,由针对 SR 问题优化的新的通道和空间注意力机制以及将这两者结合起来的融合机制组成。基于
阅读全文
摘要:1. 摘要 CNN 中的特征包含着不同类型的信息,它们对图像重建的贡献也不一样。然而,现在的大多数 CNN 模型却缺少对不同信息的辨别能力,因此也就限制了模型的表示容量。 另一方面,随着网络的加深,来自前面层的长期信息很容易在后面的层被削弱甚至消失,这显然不利于图像的超分辨。 作者提出了一个通道和空
阅读全文
摘要:1. 摘要 作者提出了一个简单但有效的注意力模块 CBAM,给定一个中间特征图,我们沿着空间和通道两个维度依次推断出注意力权重,然后与原特征图相乘来对特征进行自适应调整。 由于 CBAM 是一个轻量级的通用模块,它可以无缝地集成到任何 CNN 架构中,额外开销忽略不计,并且可以与基本 CNN 一起进
阅读全文
摘要:1. 摘要 在图像超分辨领域,卷积神经网络的深度非常重要,但过深的网络却难以训练。低分辨率的输入以及特征包含丰富的低频信息,但却在通道间被平等对待,因此阻碍了网络的表示能力。 为了解决上述问题,作者提出了一个深度残差通道注意力网络(RCAN)。特别地,作者设计了一个残差中的残差(RIR)结构来构造深
阅读全文
摘要:1. 摘要 BN 是一个广泛应用的用于快速稳定地训练深度神经网络的技术,但是我们对其有效性的真正原因仍然所知甚少。 输入分布的稳定性和 BN 的成功之间关系很小,BN 对训练过程更根本的影响是:它让优化更加平滑。这种平滑让梯度更加可预测更加稳定,从而加速训练。 2. BN 和 internal co
阅读全文
摘要:1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络。 针对每一层网络,其前面所有层的特征图被当作它的输入,这一层的输出则作为其后面所有层的输入。 DenseNet 有许多优点:消除了梯度
阅读全文
摘要:1. 摘要 更深的神经网络通常更难训练,作者提出了一个残差学习的框架,使得比过去深许多的的网络训连起来也很容易。 在 ImageNet 数据集上,作者设计的网络达到了 152 层,是 VGG 19 的 8 倍,但却有着更低的复杂性。通过集成学习模型最终取得了 3.57% 的错误率,获得了 ILSVR
阅读全文
摘要:1. 摘要 作者提出了一个代号为 Inception 的卷积神经网络架构,这也是作者在 2014 年 ImageNet 大规模视觉识别挑战赛中用于分类和检测的新技术。 通过精心的设计,该架构提高了网络内计算资源的利用率,因而允许在增加网络的深度和宽度的同时保持计算预算不变。 在作者提交的 ILSVR
阅读全文