使用matplotlib绘制散点图
在matplotlib中使用函数 matplotlib.pyplot.scatter 绘制散点图,matplotlib.pyplot.scatter的函数签名如下:
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)
常用参数有:x,y组成了散点的坐标;s为散点的面积;c为散点的颜色(默认为蓝色'b');marker为散点的标记;alpha为散点的透明度(0与1之间的数,0为完全透明,1为完全不透明);linewidths为散点边缘的线宽;如果marker为None,则使用verts的值构建散点标记;edgecolors为散点边缘颜色。
其他参数如cmap为colormap;norm为数据亮度;vmin、vmax和norm配合使用用来归一化亮度数据,这些与数据亮度有关,可以参考这篇文章。
下面为常见的用法:
1、绘制普通散点图
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# 保证图片在浏览器内正常显示
%matplotlib inline
# 10个点
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
plt.scatter(x, y)
plt.show()
输出:
2、更改散点的大小
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# 保证图片在浏览器内正常显示
%matplotlib inline
# 10个点
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
# 每个点随机大小
s = (30*np.random.rand(N))**2
plt.scatter(x, y, s=s)
plt.show()
输出:
3、更改散点颜色和透明度
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# 保证图片在浏览器内正常显示
%matplotlib inline
# 10个点
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
# 每个点随机大小
s = (30*np.random.rand(N))**2
# 随机颜色
c = np.random.rand(N)
plt.scatter(x, y, s=s, c=c, alpha=0.5)
plt.show()
输出:
4、更改散点形状
import matplotlib.pyplot as plt
import numpy as np
# 保证图片在浏览器内正常显示
%matplotlib inline
# 10个点
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
s = (30*np.random.rand(N))**2
c = np.random.rand(N)
plt.scatter(x, y, s=s, c=c, marker='^', alpha=0.5)
plt.show()
输出:
所有可用的形状可以参考matplotlib.markers。
5、在一张图上绘制两组数据的散点
import matplotlib.pyplot as plt
import numpy as np
# 保证图片在浏览器内正常显示
%matplotlib inline
# 10个点
N = 10
x1 = np.random.rand(N)
y1 = np.random.rand(N)
x2 = np.random.rand(N)
y2 = np.random.rand(N)
plt.scatter(x1, y1, marker='o')
plt.scatter(x2, y2, marker='^')
plt.show()
输出:
6、为散点设置图例
import matplotlib.pyplot as plt
import numpy as np
# 保证图片在浏览器内正常显示
%matplotlib inline
# 10个点
N = 10
x1 = np.random.rand(N)
y1 = np.random.rand(N)
x2 = np.random.rand(N)
y2 = np.random.rand(N)
plt.scatter(x1, y1, marker='o', label="circle")
plt.scatter(x2, y2, marker='^', label="triangle")
plt.legend(loc='best')
plt.show()
输出:
本站使用「CC BY-NC-SA」创作共享协议,转载请在文章明显位置注明作者及出处。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】