(转)最短路算法--Dijkstra算法

转自:http://blog.51cto.com/ahalei/1387799

        上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”。本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。
090644t797fce7n20of7j9.png

 

       与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下。
090651l6pt4666tptut66u.png

 

       我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下。
090657ofidcactthcig33i.png

 

       我们将此时dis数组中的值称为最短路的“估计值”。
       既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当前离1号顶点最近是2号顶点。当选择了2号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即1号顶点到2号顶点的最短路程就是当前dis[2]值。为什么呢?你想啊,目前离1号顶点最近的是2号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得1号顶点到2号顶点的路程进一步缩短了。因为1号顶点到其它顶点的路程肯定没有1号到2号顶点短,对吧O(∩_∩)O~
       既然选了2号顶点,接下来再来看2号顶点有哪些出边呢。有2->3和2->4这两条边。先讨论通过2->3这条边能否让1号顶点到3号顶点的路程变短。也就是说现在来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程。dis[2]+e[2][3]中dis[2]表示1号顶点到2号顶点的路程,e[2][3]表示2->3这条边。所以dis[2]+e[2][3]就表示从1号顶点先到2号顶点,再通过2->3这条边,到达3号顶点的路程。
       我们发现dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此dis[3]要更新为10。这个过程有个专业术语叫做“松弛”。即1号顶点到3号顶点的路程即dis[3],通过2->3这条边松弛成功。这便是Dijkstra算法的主要思想:通过“边”来松弛1号顶点到其余各个顶点的路程。
       同理通过2->4(e[2][4]),可以将dis[4]的值从∞松弛为4(dis[4]初始为∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此dis[4]要更新为4)。
       刚才我们对2号顶点所有的出边进行了松弛。松弛完毕之后dis数组为:
090706vmjy7l2ee2lyalia.png
       接下来,继续在剩下的3、4、5和6号顶点中,选出离1号顶点最近的顶点。通过上面更新过dis数组,当前离1号顶点最近是4号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对4号顶点的所有出边(4->3,4->5和4->6)用刚才的方法进行松弛。松弛完毕之后dis数组为:
090714f2p1wppynngj2pep.png
       继续在剩下的3、5和6号顶点中,选出离1号顶点最近的顶点,这次选择3号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对3号顶点的所有出边(3->5)进行松弛。松弛完毕之后dis数组为:
090722ywunackk35i8cni5.png
       继续在剩下的5和6号顶点中,选出离1号顶点最近的顶点,这次选择5号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后dis数组为:
090730eq6oqzyq7laqha9y.png
       最后对6号顶点所有点出边进行松弛。因为这个例子中6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从“估计值”变为了“确定值”。
       最终dis数组如下,这便是1号顶点到其余各个顶点的最短路径。
090738azt5clcozl899ekt.png
       OK,现在来总结一下刚才的算法。算法的基本思想是:每次找到离源点(上面例子的源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:
  • 将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。

  • 设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。

  • 在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。

  • 重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

Dijkstra算法模板:

 1 const int INF = 0x3f3f3f;
 2 const int N = 1000 + 10;
 3 int map[N][N];  //邻接矩阵
 4 int dist[N]   //记录起点到其余各点的最短路径
 5 int visit[N];  //记录结点是否被访问过
 6 int n;    //存储结点个数,结点编号1~n
 7 
 8 void dijkstra(int s)   //求结点s到其余各点的最短路径,存储在dist[]中
 9 {
10     memset(visit, 0, sizeof(visit));    //初始化
11     for (int i = 1; i <= n; i++)
12         dist[i] = map[s][i];
13     dist[s] = 0;
14     visit[s] = 1;
15 
16     int min_dist, now = s;
17     for (int i = 1;i <= n; i++)
18     {
19         min_dist = INF;
20         for (int j = 1; j <= n; j++)
21         {
22             if (!visit[j] && dist[j] < min_dist)  //求与结点now相邻的距离最短的结点,最短距离存储在min_dist中
23             {
24                 min_dist = dist[j];
25                 now = j;
26             }
27         }
28         visit[now] = 1;    //标记该结点已经被访问
29         for (int j = 1; j <= n; j++)   //“松弛”操作
30             dist[j] = min(dist[j], dist[now] + map[now][j]);
31     }
32 }

      通过上面的代码我们可以看出,这个算法的时间复杂度是O(N2)。其中每次找到离1号顶点最近的顶点的时间复杂度是O(N),这里我们可以用“堆”(以后再说)来优化,使得这一部分的时间复杂度降低到O(logN)。另外对于边数M少于N2的稀疏图来说(我们把M远小于N2的图称为稀疏图,而M相对较大的图称为稠密图),我们可以用邻接表(这是个神马东西?不要着急,下周再仔细讲解)来代替邻接矩阵,使得整个时间复杂度优化到O( (M+N)logN )。请注意!在最坏的情况下M就是N2,这样的话MlogN要比N2还要大。但是大多数情况下并不会有那么多边,因此(M+N)logN要比N2小很多。

posted @ 2017-12-04 22:40  ColdCode  阅读(451)  评论(0编辑  收藏  举报
AmazingCounters.com