谈谈golang的netpoll原理(二)
接上文我们查看了bind和listen流程,直到了listen操作会在内核初始化一个epoll表,并将listen的描述符加入到epoll表中
如何保证epoll表初始化一次
前文我们看到pollDesc的init函数中调用了runtime的pollOpen函数完成的epoll创建和描述符加入,这里再贴一次代码
func (pd *pollDesc) init(fd *FD) error { serverInit.Do(runtime_pollServerInit) ctx, errno := runtime_pollOpen(uintptr(fd.Sysfd)) if errno != 0 { if ctx != 0 { runtime_pollUnblock(ctx) runtime_pollClose(ctx) } return errnoErr(syscall.Errno(errno)) } pd.runtimeCtx = ctx return nil }
runtime_pollServerInit link的是runtime/netpoll.go中的poll_runtime_pollServerInit函数
由于serverInit是sync.Once类型,所以runtime_pollServerInit只被初始化一次,而epoll模型的初始化就是在该函数完成
func poll_runtime_pollServerInit() { netpollGenericInit() } func netpollGenericInit() { if atomic.Load(&netpollInited) == 0 { lock(&netpollInitLock) if netpollInited == 0 { netpollinit() atomic.Store(&netpollInited, 1) } unlock(&netpollInitLock) } }
netpollinit实现了不同模型的初始化,epoll的实现在runtime/netpoll_epoll.go中
func netpollinit() { epfd = epollcreate1(_EPOLL_CLOEXEC) if epfd < 0 { epfd = epollcreate(1024) if epfd < 0 { println("runtime: epollcreate failed with", -epfd) throw("runtime: netpollinit failed") } closeonexec(epfd) } //... }
可以看到上述代码里实现了epoll模型的初始化,所以对于一个M主线程只会初始化一张epoll表,所有要监听的文件描述符都会放入这个表中。
跟随accept看看goroutine挂起逻辑
当我们调用Listener的Accept时,Listener为接口类型,实际调用的为TCPListener的Accept函数
func (l *TCPListener) Accept() (Conn, error) { if !l.ok() { return nil, syscall.EINVAL } c, err := l.accept() if err != nil { return nil, &OpError{Op: "accept", Net: l.fd.net, Source: nil, Addr: l.fd.laddr, Err: err} } return c, nil }
Accept内部调用了accept函数,该函数内部实际调用netFD的accept
func (ln *TCPListener) accept() (*TCPConn, error) { fd, err := ln.fd.accept() if err != nil { return nil, err } //... }
在net/fd_unix.go中实现了linux环境下accept的操作
func (fd *netFD) accept() (netfd *netFD, err error) { d, rsa, errcall, err := fd.pfd.Accept() if err != nil { if errcall != "" { err = wrapSyscallError(errcall, err) } return nil, err } if netfd, err = newFD(d, fd.family, fd.sotype, fd.net); err != nil { poll.CloseFunc(d) return nil, err } if err = netfd.init(); err != nil { netfd.Close() return nil, err } lsa, _ := syscall.Getsockname(netfd.pfd.Sysfd) netfd.setAddr(netfd.addrFunc()(lsa), netfd.addrFunc()(rsa)) return netfd, nil }
上述函数内部调用的是net/fd_unix.go内部实现的Accept函数
func (fd *FD) Accept() (int, syscall.Sockaddr, string, error) { if err := fd.readLock(); err != nil { return -1, nil, "", err } defer fd.readUnlock() if err := fd.pd.prepareRead(fd.isFile); err != nil { return -1, nil, "", err } for { s, rsa, errcall, err := accept(fd.Sysfd) if err == nil { return s, rsa, "", err } switch err { case syscall.EAGAIN: if fd.pd.pollable() { if err = fd.pd.waitRead(fd.isFile); err == nil { continue } } case syscall.ECONNABORTED: // This means that a socket on the listen // queue was closed before we Accept()ed it; // it's a silly error, so try again. continue } return -1, nil, errcall, err } }
上述函数就是tcp底层的函数了,accept(fd.Sysfd)监听fd.Sysfd描述符,等待可读事件到来,当可读事件到来后,就可以认为来了一个新的连接,从而创建一个新的描述符给新的连接。
当accept出现错误时,需要判断err类型,如果是EAGAIN说明当前没有连接到来,就调用waitRead等待连接,ECONNABORTED说明连接还未accept就断开了,可以忽略。
func (pd *pollDesc) waitRead(isFile bool) error { return pd.wait('r', isFile) }
进而调用pollDesc的wait操作
func (pd *pollDesc) wait(mode int, isFile bool) error { if pd.runtimeCtx == 0 { return errors.New("waiting for unsupported file type") } res := runtime_pollWait(pd.runtimeCtx, mode) return convertErr(res, isFile) }
wait函数中判断pd的runtime上下文是否正常,然后调用runtime包的poll_runtime_pollWait实现挂起等待
func poll_runtime_pollWait(pd *pollDesc, mode int) int { err := netpollcheckerr(pd, int32(mode)) if err != 0 { return err } if GOOS == "solaris" || GOOS == "illumos" || GOOS == "aix" { netpollarm(pd, mode) } for !netpollblock(pd, int32(mode), false) { err = netpollcheckerr(pd, int32(mode)) if err != 0 { return err } } return 0 }
poll_runtime_pollWait运行在内核M线程中,轮询调用netpollblock,所以内核M线程一直在轮询检测netpollblock返回值,当其返回true时循环就可以退出,从而用户态协程就可以继续运行了。
func netpollblock(pd *pollDesc, mode int32, waitio bool) bool { gpp := &pd.rg if mode == 'w' { gpp = &pd.wg } // set the gpp semaphore to WAIT for { old := *gpp if old == pdReady { *gpp = 0 return true } if old != 0 { throw("runtime: double wait") } if atomic.Casuintptr(gpp, 0, pdWait) { break } } if waitio || netpollcheckerr(pd, mode) == 0 { gopark(netpollblockcommit, unsafe.Pointer(gpp), waitReasonIOWait, traceEvGoBlockNet, 5) } old := atomic.Xchguintptr(gpp, 0) if old > pdWait { throw("runtime: corrupted polldesc") } return old == pdReady }
netpollblock内部根据读模式还是写模式,获取pollDesc成员变量的读协程或者写协程地址,然后判断其状态是否为pdReady,这里要详细说一下,golang阻塞一个用户态协程是要将其状态设置为0(正在运行)或者pdWait(阻塞),这里为0,所以逻辑继续往下走,之后做了一个原子操作将gpp设置为pdWait状态,接着根据这个状态,执行gopark函数,阻塞住用户态协程。当内核想激活用户协程时gopark会返回,然后该函数判断gpp是否为pdReady,从而激活用户态协程。
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) { if reason != waitReasonSleep { checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy } mp := acquirem() gp := mp.curg status := readgstatus(gp) if status != _Grunning && status != _Gscanrunning { throw("gopark: bad g status") } mp.waitlock = lock mp.waitunlockf = unlockf gp.waitreason = reason mp.waittraceev = traceEv mp.waittraceskip = traceskip releasem(mp) // can't do anything that might move the G between Ms here. mcall(park_m) }
gopark将用户态协程放在等待队列中,然后调用mcall触发汇编代码。之后会检测调用unlockf函数,如果unlockf返回false则说明可以解锁用户态协程了。另外官网的注释说unlockf不要访问用户态协程的stack,因为G’s stack可能会在gopark和unlockf之间被移除。到目前为止,我们理解了用户态协程挂起原理。
epoll就绪后如何激活用户态协程
想知道如果激活挂起的用户态协程,就要先看看epoll_wait判断就绪事件后怎么处理的。runtime/netpoll_epoll.go中实现了epollwait逻辑
func netpoll(delay int64) gList { if epfd == -1 { return gList{} } //... var events [128]epollevent retry: n := epollwait(epfd, &events[0], int32(len(events)), waitms) if n < 0 { if n != -_EINTR { println("runtime: epollwait on fd", epfd, "failed with", -n) throw("runtime: netpoll failed") } // If a timed sleep was interrupted, just return to // recalculate how long we should sleep now. if waitms > 0 { return gList{} } goto retry } var toRun gList for i := int32(0); i < n; i++ { ev := &events[i] if ev.events == 0 { continue } //... var mode int32 if ev.events&(_EPOLLIN|_EPOLLRDHUP|_EPOLLHUP|_EPOLLERR) != 0 { mode += 'r' } if ev.events&(_EPOLLOUT|_EPOLLHUP|_EPOLLERR) != 0 { mode += 'w' } if mode != 0 { pd := *(**pollDesc)(unsafe.Pointer(&ev.data)) pd.everr = false if ev.events == _EPOLLERR { pd.everr = true } netpollready(&toRun, pd, mode) } } return toRun }
可以看出netpoll函数调用epollwait返回就绪事件列表,然后遍历就绪的事件列表,从事件类型中取出pollDesc数据,调用netpollready将曾经挂起的协程放入gList中,然后返回该列表
func netpollready(toRun *gList, pd *pollDesc, mode int32) { var rg, wg *g if mode == 'r' || mode == 'r'+'w' { rg = netpollunblock(pd, 'r', true) } if mode == 'w' || mode == 'r'+'w' { wg = netpollunblock(pd, 'w', true) } if rg != nil { toRun.push(rg) } if wg != nil { toRun.push(wg) } }
netpollready调用了unblock函数,并且将协程写入glist中
func netpollunblock(pd *pollDesc, mode int32, ioready bool) *g { gpp := &pd.rg if mode == 'w' { gpp = &pd.wg } for { old := *gpp if old == pdReady { return nil } if old == 0 && !ioready { // Only set READY for ioready. runtime_pollWait // will check for timeout/cancel before waiting. return nil } var new uintptr if ioready { new = pdReady } if atomic.Casuintptr(gpp, old, new) { if old == pdReady || old == pdWait { old = 0 } return (*g)(unsafe.Pointer(old)) } } }
netpollunblock函数修改pd所在协程的状态为0,表示可运行状态,所以netpoll函数内部做了这样几件事,根据就绪事件列表找到对应的协程,将挂起的协程状态设置为0表示可运行,然后将该协程放入glist中。在runtime/proc.go中findrunnable会判断是否初始化epoll,如果初始化了则调用netpoll,从而获取glist,然后traceGoUnpark激活挂起的协程
func findrunnable() (gp *g, inheritTime bool) { _g_ := getg() //... if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 { if list := netpoll(0); !list.empty() { // non-blocking gp := list.pop() injectglist(&list) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } } //... }
以上就是golang网络调度和协程控制的原理,golang通过epoll和用户态协程调度结合的方式,实现了高并发的网络处理,这种思路是值得日后我们设计产品借鉴的。
感谢关注我的公众号