【算法设计】最大子段和问题解析(对应算法第三题)

一,题目:

最大子段和:

        给定一个长度为n的一维数组a,请找出此数组的一个子数组,使得此子数组的和sum=a[i]+a[i+1]+……+a[j]最大,其中i>=0,i<n,j>=i,j<n

              例如:31 -41 59 26 -53  58 97 -93 -23 84

        子矩阵59+26-53+58+97=187为所求的最大子数组。

二,源码

第一种:直接穷举法:

 
#include <iostream>
using namespace std;

int main()
{
   int a[10]={31, -41, 59, 26, -53,  58, 97, -93, -23, 84};
   int sum;
   int maxsofar=0;
   for(int  i = 0 ;i< 10;++i)//控制子数组开始位置
   {
       for(int j = i; j< 10 ;++j)//控制子数组结束位置
       {
                sum=0;
            for(int k=i;k<j;++k) 
                 sum+=a[k];

            if(maxsofar<sum)
                maxsofar=sum;
       }
   }

   cout<<"maxsofar:"<<maxsofar<<endl;

   return 0;
}

时间复杂度为O(n*n*n)


第二种:带记忆的递推法:
 
#include <iostream>
using namespace std;

int main()
{
   int a[10]={31, -41, 59, 26, -53,  58, 97, -93, -23, 84};
   int sum;
   int maxsofar=0;
   int current[10];
   current[0]=a[0];
   for(int i=1 ;i< 10;++i)      //首先生成个数为1,2,3……10个的数组和
   {
      current[i]=current[i-1]+a[i];       
   }

   for(int  i=0;i< 10;++i)
   {
       for(int j=i;j< 10;++j)     //下面通过已求出的和递推
       {
           sum=current[j]-current[i-1];

           if(sum>maxsofar)
               maxsofar=sum;
       }
   }

   cout<<"maxsofar:"<<maxsofar<<endl;

   return 0;
}


显然第二种方法比第一种方法有所改进,时间复杂度为O(n*n)。

第三种:动态规划


     下面我们来分析一下最大子段和的子结构,令b[j]表示从a[0]~a[j]的最大子段和。

                       b[j]的当前值只有两种情况: 

                                  (1) 最大子段一直连续到a[j] 

                                  (2) 以a[j]为起点的子段  //如果不是第(1)种,则(1)肯定为负,舍去

      还有一种情况,那就是最大字段没有包含a[j],如果没有包含a[j]的话,那么在算b[j]之前的时候我们已经算出来了,注意我们只是算到位置为j的地方,所以最大子段在a[j]后面的情况我们可以暂时不考虑。

      由此我们得出b[j]的状态转移方程为:b[j]=max{b[j-1]+a[j], a[j]},
      所求的最大子段和为max{b[j],0<=j<n}。进一步我们可以将b[]数组用一个变量代替。

#include <iostream>
using namespace std;

int main()
{
   int a[10]={31, -41, 59, 26, -53,  58, 97, -93, -23, 84};
  
   int b=0,sum=a[0];

        for(int i=0;i<10;i++)
        {
             if(b>0)
                  b+=a[i];
             else
                  b=a[i];//如果前面为零,如果相加,则影响后面结果,所以抛弃前面总和
             if(b>sum) 
                  sum=b;  
        }


   cout<<"MaxSum:"<<sum<<endl;

   return 0;
}
算法复杂度:O(n)
posted @ 2012-04-23 15:13  MXi4oyu  阅读(187)  评论(0编辑  收藏  举报