【100题】三十五 求一个矩阵中最大的二维矩阵(元素和最大)

一,题目:

求一个矩阵中最大的二维矩阵(元素和最大).:
1 2 0 3 4
2 3 4 5 1
1 1 5 3 0
中最大的是
:
4 5
5 3
要求:(1)写出算法;(2)分析时间复杂度;(3)C写出关键代码

二,分析:

 假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,
如下所示(ari表示a[r][i],假设数组下标从1开始)

  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  .....

  | ar1 …… ari ……arj ……arn |    r . . .
  ..........                            | 
 

                                  V
  | ak1 …… aki ……akj ……akn |  
k . . .

  .....
  | an1 …… ani ……anj ……ann |

 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 
由此我们可以看出最后所求的就是此一维数组的最大子段和问题,
到此我们已经将问题转化为上面的已经解决了的问题了。

三,源码(以下源码是求n行n列矩阵最大子矩阵代码)

#include <iostream>
using namespace std;

int maxSubArray(int a[],int n)
{
     int b=0,sum=a[0];
     for(int i=0;i<n;i++)
     {
       if(b>0) 
          b+=a[i];
       else 
          b=a[i];
       if(b>sum)
          sum=b;
     }
    return sum;  
}
int maxSubMatrix(int array[][3],int n)
{
            int i,j,k,max=0,sum=-100000000;
            int b[3];
            for(i=0;i<n;i++)
            {
                  for(k=0;k<n;k++)//初始化b[]
                  {
                        b[k]=0;
                  }
                  for(j=i;j<n;j++)//把第i行到第j行相加,对每一次相加求出最大值
                  {
                        for(k=0;k<n;k++)
                        {
                              b[k]+=array[j][k];
                        }
                        max=maxSubArray(b,k);  
                        if(max>sum)
                        {
                                sum=max;
                        }
                  }
            }
            return sum;
}
int main()
{ 
    int n=3;
    int array[3][3]={{1,2,3},{-1,-2,-3},{4,5,6}};
                      
    cout<<"MaxSum: "<<maxSubMatrix(array,n)<<endl;
            
 }




posted @ 2012-04-23 18:44  MXi4oyu  阅读(189)  评论(0编辑  收藏  举报