机器学习第一次作业
深度学习
深度学习的背景是机器学习,机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。机器能否像人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。
而从机器学习的基础上,又有了深度的概念:
从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算以及一个计算的值,计算的结果被应用到这个节点的子节点的值。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有父节点,输出节点没有子节点。
这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。
传统的前馈神经网络能够被看做拥有等于层数的深度(比如对于输出层为隐层数加1)。SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合)。[4]
人工智能研究的方向之一,是以所谓 “专家系统” 为代表的,用大量 “如果-就” (If - Then) 规则定义的,自上而下的思路。人工神经网络 ( Artifical Neural Network),标志着另外一种自下而上的思路。神经网络没有一个严格的正式定义。它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的模式。
需要使用深度学习解决的问题有以下的特征:
1.深度不足会出现问题。
2.人脑具有一个深度结构。
3.认知过程逐层进行,逐步抽象。
4.深度不足会出现问题
在许多情形中深度2就足够表示任何一个带有给定目标精度的函数。但是其代价是:图中所需要的节点数(比如计算和参数数量)可能变的非常大。理论结果证实那些事实上所需要的节点数随着输入的大小指数增长的函数族是存在的。
我们可以将深度架构看做一种因子分解。大部分随机选择的函数不能被有效地表示,无论是用深的或者浅的架构。但是许多能够有效地被深度架构表示的却不能被用浅的架构高效表示。一个紧的和深度的表示的存在意味着在潜在的可被表示的函数中存在某种结构。如果不存在任何结构,那将不可能很好地泛化。
模式识别
人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。字符识别就是一个典型的例子。例如数字“4”可以有各种写法,但都属于同一类别。更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。人脑的这种思维能力就构成了“模式”的概念。在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。也有的学者认为应该把整个的类别叫作模式,这样的“模式”是一种抽象化的概念,如“房屋”等都是“模式”,而把具体的对象,如人民大会堂,叫作“房屋”这类模式中的一个样本。这种名词上的不同含义是容易从上下文中弄淸楚的。
模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised
Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。