PAT1040. Longest Symmetric String (25)(回文串:dp)

题意:

给出一个字符串,求出其中最大的回文串字数

要点:

这题比较好的办法是用dp做:

  • dp[i][j]表示从s[i]到s[j]是否为回文串,用0、1区分
  • s[i]=s[j]时,dp[i][j]=dp[i+1][j-1];s[i]!=s[j]时,dp[i][j]=0
  • 边界:dp[i][i]=1,dp[i][i+1]=(s[i]==s[i+1])?1:0
  • 因为i、j如果从小到大的顺序来枚举的话,无法保证更新dp[i][j]的时候dp[i+1][j-1]已经被计算过。因此不妨考虑按照字串的长度和子串的初试位置进行枚举,即第一遍将长度为3的子串的dp的值全部求出,第二遍通过第一遍结果计算出长度为4的子串的dp的值…这样就可以避免状态无法转移的问题
#include<iostream>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<sstream>
#include<functional>
#include<algorithm>
using namespace std;
const int INF = 0xfffff;
const int maxn = 1010;

int dp[maxn][maxn];

int main() {
	string s;
	getline(cin, s);
	int ans = 1;
	int len = s.length();
	for (int i = 0; i < len; i++) {
		dp[i][i] = 1;
		if (i + 1 < len&&s[i] == s[i + 1]) {
			dp[i][i + 1] = 1;
			ans = 2;
		}
	}
	for (int l = 3; l <= len; l++) {
		for (int i = 0; i+l-1 < len; i++) {
			int j = i + l - 1;
			if (s[i] == s[j] && dp[i + 1][j - 1] == 1) {
				dp[i][j] = 1;
				ans = l;
			}
		}
	}
	cout << ans << endl;
	return 0;
}
/*以字符串中每个字符为对称轴*/
#include<iostream>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<sstream>
#include<functional>
#include<algorithm>
using namespace std;
const int INF = 0xfffff;
const int maxn = 1005;

int main() {
	string s;
	getline(cin, s);
	int len = 1;
	for (int i = 0; i < s.size(); i++) {
		for (int j = 0; j <= min(i, (int)(s.size() - i - 1)); j++) {
			string s2 = s.substr(i - j, 2 * j + 1);//字数为奇数
			string s3 = s2;
			reverse(s3.begin(), s3.end());
			if (s2 == s3&&s2.size() > len)
				len = s2.size();
			string s4 = s.substr(i - j, 2 * j + 2);//字数为偶数
			string s5 = s4;
			reverse(s5.begin(), s5.end());
			if (s4 == s5&&s4.size() > len)
				len = s4.size();
		}
	}
	cout << len << endl;
	return 0;
}


posted @ 2018-04-24 22:01  seasonal  阅读(71)  评论(0编辑  收藏  举报