Uva 12171 Sculpture - 离散化 + floodfill

题目连接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3323

题意:

三维空间中有n个长方体组成的雕塑,求表面积和体积。

分析:

因为长方体块可能在中间包围空气(也计入长方体体积),直接计算长方体体积是比较困难的,但是我们可以计算空气的体积,然后用总体积减去空气体积得出长方体的总体积。

这道题网上很多答案是模糊不清并且提交上去是错误的。

解这道题的关键是离散化后坐标的处理。在建立好离散坐标系后,利用离散坐标系在原坐标系中绘制长方体区域块,然后floodfill离散坐标系,初始点为(0,0,0)

注意这里的关键,floodfill处理的是离散坐标系! 比如离散坐标(0,0,0),他是原始坐标也是(0,0,0)  为原点, 长方体第一个顶点的原始坐标为(2,4,6),处理后的离散坐标可能是(1,1,1)也可能是(1,1,2)等,这个不要紧,bfs时判断其是不是长方体的顶点原始坐标(看看该离散坐标对应的原始坐标区域有无被标记)就好了,然后累加空气块体积和长方体的表面积即可。

 

附上一份网络上个人认为写得比较好的的参考代码:

  1 #include <cstdio>
  2 #include <algorithm>
  3 #include <queue>
  4 #include <cstring>
  5 using namespace std;
  6 
  7 const int maxn = 50 + 5;
  8 const int maxc = 1000 + 1;
  9 
 10 int n, x0[maxn], y0[maxn], z0[maxn], x1[maxn], y1[maxn], z1[maxn];
 11 
 12 int nx, ny, nz;
 13 int xs[maxn*2], ys[maxn*2], zs[maxn*2];
 14 
 15 const int dx[] = {1,-1,0,0,0,0};
 16 const int dy[] = {0,0,1,-1,0,0};
 17 const int dz[] = {0,0,0,0,1,-1};
 18 int color[maxn*2][maxn*2][maxn*2];
 19 
 20 struct Cell
 21 {
 22     int x, y, z;
 23     Cell(int x=0, int y=0, int z=0):x(x), y(y), z(z) {}
 24     bool valid() const { return x >= 0 && x < nx-1 && y >= 0 && y < ny-1 && z >= 0 && z < nz-1;}
 25     bool solid() const { return color[x][y][z] == 1; }
 26     bool getVis() const { return color[x][y][z] == 2; }
 27     void setVis() const { color[x][y][z] = 2; }
 28     Cell neighbor(int dir) const
 29     { return Cell(x+dx[dir], y+dy[dir], z+dz[dir]); }
 30     int volume()
 31     { return (xs[x+1]-xs[x]) * (ys[y+1]-ys[y]) * (zs[z+1]-zs[z]); }
 32     int area(int dir)
 33     {
 34         if(dx[dir]) return (ys[y+1]-ys[y]) * (zs[z+1]-zs[z]);
 35         if(dy[dir]) return (xs[x+1]-xs[x]) * (zs[z+1]-zs[z]);
 36         return (xs[x+1]-xs[x]) * (ys[y+1]-ys[y]);
 37     }
 38 };
 39 
 40 void discrectize(int* x, int& n)
 41 {
 42     sort(x, x + n);
 43     n = unique(x, x + n) - x;
 44 }
 45 
 46 int ID(int* x, int n, int x0)
 47 {
 48     return lower_bound(x, x + n, x0) - x;
 49 }
 50 
 51 void floodfill(int& v, int& s)
 52 {
 53     v = s = 0;
 54     Cell c;
 55     c.setVis();
 56     queue<Cell> q;
 57     q.push(c);
 58     while(!q.empty())
 59     {
 60         Cell c = q.front(); q.pop();
 61         v += c.volume();
 62         for(int i = 0; i < 6; ++i)
 63         {
 64             Cell c2 = c.neighbor(i);
 65             if(!c2.valid()) continue;
 66             if(c2.solid()) s += c.area(i);
 67             else if(!c2.getVis())
 68             {
 69                 c2.setVis();
 70                 q.push(c2);
 71             }
 72         }
 73     }
 74     v = maxc*maxc*maxc - v;
 75 }
 76 
 77 int main()
 78 {
 79     //freopen("in.txt", "r", stdin);
 80     int T;
 81     scanf("%d", &T);
 82     while(T--)
 83     {
 84         memset(color, 0, sizeof(color));
 85         nx = ny = nz = 2;
 86         xs[0] = ys[0] = zs[0] = 0;
 87         xs[1] = ys[1] = zs[1] = maxc;
 88         scanf("%d", &n);
 89         for(int i = 0; i < n; ++i)
 90         {
 91             scanf("%d%d%d%d%d%d", &x0[i], &y0[i], &z0[i], &x1[i], &y1[i], &z1[i]);
 92             x1[i] += x0[i]; y1[i] += y0[i]; z1[i] += z0[i];
 93             xs[nx++] = x0[i]; xs[nx++] = x1[i];
 94             ys[ny++] = y0[i]; ys[ny++] = y1[i];
 95             zs[nz++] = z0[i]; zs[nz++] = z1[i];
 96         }
 97         discrectize(xs, nx);
 98         discrectize(ys, ny);
 99         discrectize(zs, nz);
100 
101         for(int i = 0; i < n; ++i)
102         {
103             int X1 = ID(xs, nx, x0[i]), X2 = ID(xs, nx, x1[i]);
104             int Y1 = ID(ys, ny, y0[i]), Y2 = ID(ys, ny, y1[i]);
105             int Z1 = ID(zs, nz, z0[i]), Z2 = ID(zs, nz, z1[i]);
106             for(int X = X1; X < X2; X++)
107                 for(int Y = Y1; Y < Y2; ++Y)
108                     for(int Z = Z1; Z < Z2; ++Z)
109                         color[X][Y][Z] = 1;
110         }
111 
112         int v, s;
113         floodfill(v, s);
114         printf("%d %d\n", s, v);
115     }
116 
117     return 0;
118 }

 

posted @ 2017-12-13 09:13  SeanLiao  阅读(215)  评论(0编辑  收藏  举报