CSAPP 第二章随笔
类型转换问题
(1)int -> short 二进制位高位截断,低位保持不变
(2)同类型 unsign -> sign 记住二进制位是不变的
(3)P101页提到的编译器乘法优化问题,一般的乘法需要cpu时钟周期(i7 cpu下乘法也要3 clock cycles)比加法和位移、对二进制位的操作等(only 1 clock cycle)要慢很多。
所以一般乘法 如x*b,编译器会自动转换为若干个x*2^n然后相加的形式,然后只要执行位移和加法就可以完成乘法运算了,可以缩短所需要的时钟周期。注意溢出也没事照做。
对于一些常数K,表达式x*K,编译器可以将K的二进制表示为分开的若干个0或1的序列
[(0…0)(1…1)(0…0)…(1...1)]。
For example,14 can be written as [(0…0)(111)(0)].
Consider a run of ones from bit position n down to bit position m. (n >= m)
如1的起点二进制位posi 为1,终点为3
这样的话,x*K就可以表示为下列两种形式
Form A:(x << n) + (x <<(n-1)) + …+(x<<m)
Form B:(x << (n+1) – (x << m))
(4)P104除法优化问题,同理
Integer division on most machine is even slower than integer multiplication—requiring 30 or more clock cycles.
P116
注意这个Denormalized number.
P120
Floating point Rounding…
There are four rouding mode(凑整模式):
Round-to-even, Round-toward-zero,Round-down,Round-up;
When using Round-to-mode, both 1.2350000 and 1.2450000 would be round to 1.24 since 4 is even(偶数的). As to binary fractional, it means that we prefer to have the least significant bit equal to zero.
P125
浮点数类型转换问题
From float or double to int:
The value will be round to zero. For example, 1.999 will be converted to 1, while -1.999 will be converted to -1.