Mysql优化_第十三篇(HashJoin篇)

Mysql优化_第十三篇(HashJoin篇)

1 适用场景

纯等值查询,不能使用索引

从MYSQL 8.0.18开始,MYSQL实现了对于相等条件下的HASHJOIN,并且,join条件中无法使用任何索引,比如下面的语句:

SELECT *
    FROM t1
    JOIN t2
        ON t1.c1=t2.c1;

等值查询,使用到索引

当然,如果有一个或者多个索引可以适用于单表谓词,hash join也可以使用到。(这句话不是很懂?原句为:A hash join can also be used when there are one or more indexes that can be used for single-table predicates.

相对于Blocked Nested Loop Algorithm,以下简称BNL,hash join性能更高,并且两者的使用场景相同,所以从8.0.20开始,BNL已经被移除。使用hash join替代之。

通常在EXPLAIN的结果里面,在Extra列,会有如下描述:

Extra: Using where; Using join buffer (hash join)

说明使用到了hash join。

多个join条件中至少包含一个等值查询(可以包含非等值)

虽然hash join适用于等值join,但是,从原则上来讲,在多个join条件中,只要有每对join条件中,至少存在一个等值,Mysql就可以使用到hash join来提升速度,比如下面的语句:

SELECT * FROM t1
    JOIN t2 ON (t1.c1 = t2.c1 AND t1.c2 < t2.c2)  该语句包含非等值的join条件
    JOIN t3 ON (t2.c1 = t3.c1);

EXPLAIN FORMAT=TREE的结果如下:

EXPLAIN: -> Inner hash join (t3.c1 = t1.c1)  (cost=1.05 rows=1)
    -> Table scan on t3  (cost=0.35 rows=1)
    -> Hash
        -> Filter: (t1.c2 < t2.c2)  (cost=0.70 rows=1)
            -> Inner hash join (t2.c1 = t1.c1)  (cost=0.70 rows=1)
                -> Table scan on t2  (cost=0.35 rows=1)
                -> Hash
                    -> Table scan on t1  (cost=0.35 rows=1)

多个join条件对中完全没有等值查询(从8.0.20开始)

在Mysql8.0.20之前,如果join条件中有任何一个条件没有包含等值,那么BNL就会被应用但是从8.0.20开始,hash join也可以应用到下面的语句

mysql> EXPLAIN FORMAT=TREE
    -> SELECT * FROM t1
    ->     JOIN t2 ON (t1.c1 = t2.c1)
    ->     JOIN t3 ON (t2.c1 < t3.c1)\G   该join条件不包含等值,会作为filter来使用
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t1.c1 < t3.c1)  (cost=1.05 rows=1)
    -> Inner hash join (no condition)  (cost=1.05 rows=1)
        -> Table scan on t3  (cost=0.35 rows=1)
        -> Hash
            -> Inner hash join (t2.c1 = t1.c1)  (cost=0.70 rows=1)
                -> Table scan on t2  (cost=0.35 rows=1)
                -> Hash
                    -> Table scan on t1  (cost=0.35 rows=1)

笛卡尔积

当然,也可以适用于笛卡尔积(没有指定join条件):

mysql> EXPLAIN FORMAT=TREE
    -> SELECT *
    ->     FROM t1
    ->     JOIN t2
    ->     WHERE t1.c2 > 50\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join  (cost=0.70 rows=1)
    -> Table scan on t2  (cost=0.35 rows=1)
    -> Hash
        -> Filter: (t1.c2 > 50)  (cost=0.35 rows=1)  where条件提早过滤
            -> Table scan on t1  (cost=0.35 rows=1)

普通inner join完全没有等值

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 JOIN t2 ON t1.c1 < t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t1.c1 < t2.c1)  (cost=4.70 rows=12)  //join条件变成了filter
    -> Inner hash join (no condition)  (cost=4.70 rows=12)
        -> Table scan on t2  (cost=0.08 rows=6)
        -> Hash
            -> Table scan on t1  (cost=0.85 rows=6)

Semijoin(Mysql文档EXPLAIN有误,这里更正下)

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 
    ->     WHERE t1.c1 IN (SELECT t2.c2 FROM t2)\G
*************************** 1. row ***************************
| -> Filter: (t1.c1 < t2.c1)  (cost=0.70 rows=1)
    -> Inner hash join (no condition)  (cost=0.70 rows=1)
        -> Table scan on t2  (cost=0.35 rows=1)
        -> Hash
            -> Table scan on t1  (cost=0.35 rows=1)
 |

Antijoin(Mysql文档EXPLAIN有误,这里更正下)

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t2 
    ->     WHERE NOT EXISTS (SELECT * FROM t1 WHERE t1.col1 = t2.col1)\G
*************************** 1. row ***************************
| -> Hash antijoin (t1.c1 = t2.c2)  (cost=0.70 rows=1)
    -> Table scan on t2  (cost=0.35 rows=1)
    -> Hash
        -> Table scan on t1  (cost=0.35 rows=1)
 |

Left outer join

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 LEFT JOIN t2 ON t1.c1 = t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Left hash join (t2.c1 = t1.c1)  (cost=3.99 rows=36)
    -> Table scan on t1  (cost=0.85 rows=6)
    -> Hash
        -> Table scan on t2  (cost=0.14 rows=6)

Right outer join(MYSQL会把所有的右外连接转换为左外连接):

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 RIGHT JOIN t2 ON t1.c1 = t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Left hash join (t1.c1 = t2.c1)  (cost=3.99 rows=36)
    -> Table scan on t2  (cost=0.85 rows=6)
    -> Hash
        -> Table scan on t1  (cost=0.14 rows=6)

相关配置

目前可以使用 join_buffer_size 系统变量来控制hash join使用到的内存大小,如果需要使用到的内存超过了这个大小,那么就会下盘,这个时候效率就会比较低了,需要使用者进行优化。

posted @ 2020-11-30 18:05  不晓得叫什么  阅读(3251)  评论(0编辑  收藏  举报