TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST
"如果一个算法在MNIST上不work,那么它就根本没法用;而如果它在MNIST上work,它在其他数据上也可能不work"。
—— 马克吐温
上一篇文章我们实现了一个MNIST手写数字识别的程序,通过一个简单的两层神经网络,就轻松获得了98%的识别成功率。这个成功率不代表你的网络是有效的,因为MNIST实在是太简单了,我们需要更复杂的数据集来检验网络的有效性!这就有了Fashion-MNIST数据集,它采用10种服装的图片来取代数字0~9,除此之外,其图片大小、数量均和MNIST一致。
上篇文章的代码几乎不用改动,只要改个获取原始图片文件的文件夹名称即可。
程序运行结果识别成功率大约为82%左右。
我们可以对网络进行调整,看能否提高识别率,具体可用的方法:
1、增加网络层
2、增加神经元个数
3、改用其它激活函数
试验结果表明,不管如何调整,识别率始终上不去多少。可见该网络方案已经碰到了瓶颈,如果要大幅度提高识别率必须要采取新的方案了。
下篇文章我们将介绍卷积神经网络(CNN)的应用,通过CNN来处理图像数据将是一个更好、更科学的解决方案。
由于本文代码和上一篇文章的代码高度一致,这里就不再详细说明了。全部代码如下:
/// <summary> /// 采用神经网络处理Fashion-MNIST数据集 /// </summary> public class NN_MultipleClassification_Fashion_MNIST { private readonly string TrainImagePath = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\train"; private readonly string TestImagePath = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\test"; private readonly string train_date_path = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\train_data.bin"; private readonly string train_label_path = @"D:\Study\Blogs\TF_Net\Asset\fashion_mnist_png\train_label.bin"; private readonly int img_rows = 28; private readonly int img_cols = 28; private readonly int num_classes = 10; // total classes public void Run() { var model = BuildModel(); model.summary(); model.compile(optimizer: keras.optimizers.Adam(0.001f), loss: keras.losses.SparseCategoricalCrossentropy(), metrics: new[] { "accuracy" }); (NDArray train_x, NDArray train_y) = LoadTrainingData(); model.fit(train_x, train_y, batch_size: 1024, epochs: 20); test(model); } /// <summary> /// 构建网络模型 /// </summary> private Model BuildModel() { // 网络参数 int n_hidden_1 = 128; // 1st layer number of neurons. int n_hidden_2 = 128; // 2nd layer number of neurons. float scale = 1.0f / 255; var model = keras.Sequential(new List<ILayer> { keras.layers.InputLayer((img_rows,img_cols)), keras.layers.Flatten(), keras.layers.Rescaling(scale), keras.layers.Dense(n_hidden_1, activation:keras.activations.Relu), keras.layers.Dense(n_hidden_2, activation:keras.activations.Relu), keras.layers.Dense(num_classes, activation:keras.activations.Softmax) }); return model; } /// <summary> /// 加载训练数据 /// </summary> /// <param name="total_size"></param> private (NDArray, NDArray) LoadTrainingData() { try { Console.WriteLine("Load data"); IFormatter serializer = new BinaryFormatter(); FileStream loadFile = new FileStream(train_date_path, FileMode.Open, FileAccess.Read); float[,,] arrx = serializer.Deserialize(loadFile) as float[,,]; loadFile = new FileStream(train_label_path, FileMode.Open, FileAccess.Read); int[] arry = serializer.Deserialize(loadFile) as int[]; Console.WriteLine("Load data success"); return (np.array(arrx), np.array(arry)); } catch (Exception ex) { Console.WriteLine($"Load data Exception:{ex.Message}"); return LoadRawData(); } } private (NDArray, NDArray) LoadRawData() { Console.WriteLine("LoadRawData"); int total_size = 60000; float[,,] arrx = new float[total_size, img_rows, img_cols]; int[] arry = new int[total_size]; int count = 0; DirectoryInfo RootDir = new DirectoryInfo(TrainImagePath); foreach (var Dir in RootDir.GetDirectories()) { foreach (var file in Dir.GetFiles("*.png")) { Bitmap bmp = (Bitmap)Image.FromFile(file.FullName); if (bmp.Width != img_cols || bmp.Height != img_rows) { continue; } for (int row = 0; row < img_rows; row++) for (int col = 0; col < img_cols; col++) { var pixel = bmp.GetPixel(col, row); int val = (pixel.R + pixel.G + pixel.B) / 3; arrx[count, row, col] = val; arry[count] = int.Parse(Dir.Name); } count++; } Console.WriteLine($"Load image data count={count}"); } Console.WriteLine("LoadRawData finished"); //Save Data Console.WriteLine("Save data"); IFormatter serializer = new BinaryFormatter(); //开始序列化 FileStream saveFile = new FileStream(train_date_path, FileMode.Create, FileAccess.Write); serializer.Serialize(saveFile, arrx); saveFile.Close(); saveFile = new FileStream(train_label_path, FileMode.Create, FileAccess.Write); serializer.Serialize(saveFile, arry); saveFile.Close(); Console.WriteLine("Save data finished"); return (np.array(arrx), np.array(arry)); } /// <summary> /// 消费模型 /// </summary> private void test(Model model) { Random rand = new Random(1); DirectoryInfo TestDir = new DirectoryInfo(TestImagePath); foreach (var ChildDir in TestDir.GetDirectories()) { Console.WriteLine($"Folder:【{ChildDir.Name}】"); var Files = ChildDir.GetFiles("*.png"); for (int i = 0; i < 10; i++) { int index = rand.Next(1000); var image = Files[index]; var x = LoadImage(image.FullName); var pred_y = model.Apply(x); var result = argmax(pred_y[0].numpy()); Console.WriteLine($"FileName:{image.Name}\tPred:{result}"); } } } private NDArray LoadImage(string filename) { float[,,] arrx = new float[1, img_rows, img_cols]; Bitmap bmp = (Bitmap)Image.FromFile(filename); for (int row = 0; row < img_rows; row++) for (int col = 0; col < img_cols; col++) { var pixel = bmp.GetPixel(col, row); int val = (pixel.R + pixel.G + pixel.B) / 3; arrx[0, row, col] = val; } return np.array(arrx); } private int argmax(NDArray array) { var arr = array.reshape(-1); float max = 0; for (int i = 0; i < 10; i++) { if (arr[i] > max) { max = arr[i]; } } for (int i = 0; i < 10; i++) { if (arr[i] == max) { return i; } } return 0; } }
【相关资源】
源码:Git: https://gitee.com/seabluescn/tf_not.git
项目名称:NN_MultipleClassification_Fashion_MNIST
签名区:
如果您觉得这篇博客对您有帮助或启发,请点击右侧【推荐】支持,谢谢!