随笔分类 - TensorFlow.Net
摘要:某个无聊的下午,在博客园刷帖时无意发现一篇介绍关于风格迁移的文章,提到某个国外团队在这方面研究的最新进展。 他们实现了一个网络,可以把真人的照片转为二次元卡通图片,效果非常好。 论文地址:[2106.06561] GANs N' Roses: Stable, Controllable, Divers
阅读全文
摘要:随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习。本文介绍如何在GPU环境下使用TensorFlow.NET。
阅读全文
摘要:本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集。 程序流程如下: 1、准备样本数据 2、构建卷积神经网络模型 3、网络学习(训练) 4、消费、测试 除了网络模型的构建,其它步骤都和前面介绍的普通神经网络的处理完全一致,本文就不重复介绍了,重点讲一下模型的构建。 先看代
阅读全文
摘要:"如果一个算法在MNIST上不work,那么它就根本没法用;而如果它在MNIST上work,它在其他数据上也可能不work"。 —— 马克吐温 上一篇文章我们实现了一个MNIST手写数字识别的程序,通过一个简单的两层神经网络,就轻松获得了98%的识别成功率。这个成功率不代表你的网络是有效的,因为MN
阅读全文
摘要:从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作。这次我们要解决机器学习的经典问题,MNIST手写数字识别。 首先介绍一下数据集。请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中trainin
阅读全文
摘要:上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题。 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三个类别:偏瘦、正常、偏胖。 处理流程如下: 1、收集数据 2、构建神经网络 3、训练网络 4、保存和
阅读全文
摘要:上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出。 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量存在几次方的分量,所以我们采用一个神经网络去定义一个函数。 我们假设只有一个输入、一个输出,神经网络
阅读全文
摘要:回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种。 设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值。 举个例子:快年底了,销售部门要发年终奖了,销售员小王想知道今年能拿多少年终奖,目前他大抵知道年终奖是和销售额(特征量)挂钩的,具体什么规则不清
阅读全文
摘要:本文介绍TensorFlow.NET基本开发环境。
阅读全文
摘要:这个系列的文章是我这段时间学习TensorFlow.Net的心得体会。
阅读全文