python 生成器 迭代器 yiled
文章来源:http://python.jobbole.com/81911/
https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143178254193589df9c612d2449618ea460e7a672a366000
生成器(generator)概念
生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。
生成器语法
生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。
gen = (x**2 for x in range(5)) print gen for g in gen: print g
打印生成器可以通过generator的next()方法:
g.next() 直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1
但是生成器函数可以生产一个无线的序列,这样列表根本没有办法进行处理。
yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。
generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
yield 与 return
在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;
def g1(): yield 1 g=g1() print next(g) #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。 print next(g) #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。
如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
def g2(): yield 'a' return yield 'b' g=g2() print next(g) #程序停留在执行完yield 'a'语句后的位置。 print next(g) #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行。
如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。
生成器没有办法使用return来返回值。
def g3(): ##python 版本要大于3.3 yield 'hello' # return 'world' g=g3() print next(g) print next(g)
生成器支持的方法
odd = class generator(object) | Methods defined here: ...... | close(...) | close() -> raise GeneratorExit inside generator. | | send(...) | send(arg) -> send 'arg' into generator, | return next yielded value or raise StopIteration. | | throw(...) | throw(typ[,val[,tb]]) -> raise exception in generator, | return next yielded value or raise StopIteration.
close()
手动关闭生成器函数,后面的调用会直接返回StopIteration异常。
send()
生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,实现后面我会讲到的协程就全靠它了。
def gen(): value = 0 while True: receive = yield value if receive == 'e': break value = 'got: %s' % receive g = gen() print(g.send(None)) print(g.send('aaa')) print(g.send(3)) print(g.send('e'))
执行流程:
- 通过g.send(None)或者next(g)可以启动生成器函数,并执行到第一个yield语句结束的位置。此时,执行完了yield语句,但是没有给receive赋值。yield value会输出初始值0注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。
- 通过g.send(‘aaa’),会传入aaa,并赋值给receive,然后计算出value的值,并回到while头部,执行yield value语句有停止。此时yield value会输出”got: aaa”,然后挂起。
- 通过g.send(3),会重复第2步,最后输出结果为”got: 3″
- 当我们g.send(‘e’)时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。
最后的执行结果如下:
0 got: aaa got: 3 Traceback (most recent call last): File "h.py", line 14, in <module> print(g.send('e')) StopIteration
throw()
用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。
def gen(): while True: try: yield 'normal value' yield 'normal value 2' print('here') except ValueError: print('we got ValueError here') except TypeError: break g=gen() print(next(g)) print(g.throw(ValueError)) print(next(g)) print(g.throw(TypeError))
解释:
- print(next(g)):会输出normal value,并停留在yield ‘normal value 2’之前。
- 由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield ‘normal value 2’不会被执行,然后进入到except语句,打印出we got ValueError here。然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。
- print(next(g)),会执行yield ‘normal value 2’语句,并停留在执行完该语句后的位置。
- g.throw(TypeError):会跳出try语句,从而print(‘here’)不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。
下面给出一个综合例子,用来把一个多维列表展开,或者说扁平化多维列表)
def flatten(nested): try: #如果是字符串,那么手动抛出TypeError。 if isinstance(nested, str): raise TypeError for sublist in nested: #yield flatten(sublist) for element in flatten(sublist): #yield element print('got:', element) except TypeError: #print('here') yield nested L=['aaadf',[1,2,3],2,4,[5,[6,[8,[9]],'ddf'],7]] for num in flatten(L): print(num)
总结
- 按照鸭子模型理论,生成器就是一种迭代器,可以使用for进行迭代。
- 第一次执行next(generator)时,会执行完yield语句后程序进行挂起,所有的参数和状态会进行保存。再一次执行next(generator)时,会从挂起的状态开始往后执行。在遇到程序的结尾或者遇到StopIteration时,循环结束。
- 可以通过generator.send(arg)来传入参数,这是协程模型。
- 可以通过generator.throw(exception)来传入一个异常。throw语句会消耗掉一个yield。可以通过generator.close()来手动关闭生成器。
- next()等价于send(None)
迭代器
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
from collections import Iterable print isinstance([], Iterable) print isinstance({}, Iterable) print isinstance('abc', Iterable) print isinstance((x for x in range(10)), Iterable) print isinstance(100, Iterable)
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
from collections import Iterator print isinstance((x for x in range(10)), Iterator) print isinstance([], Iterator) print isinstance({}, Iterator) print isinstance('abc', Iterator)
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
from collections import Iterator print isinstance(iter([]), Iterator) print isinstance(iter('abc'), Iterator)
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的,例如:
for x in [1, 2, 3, 4, 5]: pass
实际上完全等价于:
# 首先获得Iterator对象: it = iter([1, 2, 3, 4, 5]) # 循环: while True: try: # 获得下一个值: x = next(it) except StopIteration: # 遇到StopIteration就退出循环 break