一、常见的限流算法
目前常用的限流算法有两个:漏桶算法和令牌桶算法。
1.漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。
2.令牌桶算法
令牌桶算法的原理是系统以一定速率向桶中放入令牌,如果有请求时,请求会从桶中取出令牌,如果能取到令牌,则可以继续完成请求,否则等待或者拒绝服务。这种算法可以应对突发程序的请求,因此比漏桶算法好。
在Wikipedia上,令牌桶算法是这么描述的:
- 每秒会有r个令牌放入桶中,或者说,每过1/r 秒桶中增加一个令牌
- 桶中最多存放b个令牌,如果桶满了,新放入的令牌会被丢弃
- 当一个n字节的数据包到达时,消耗n个令牌,然后发送该数据包
- 如果桶中可用令牌小于n,则该数据包将被缓存或丢弃
二、RateLimiter
Guava中开源出来一个令牌桶算法的工具类RateLimiter,可以轻松实现限流的工作。RateLimiter对简单的令牌桶算法做了一些工程上的优化,具体的实现是SmoothBursty。需要注意的是,RateLimiter的另一个实现SmoothWarmingUp,就不是令牌桶了,而是漏桶算法。也许是出于简单起见,RateLimiter中的时间窗口能且仅能为1S,如果想搞其他时间单位的限流,只能另外造轮子。
RateLimiter有一个有趣的特性是[前人挖坑后人跳],也就是说RateLimiter允许某次请求拿走了超出剩余令牌数的令牌,但是下一次请求将为此付出代价,一直等到令牌亏空补上,并且桶中有足够本次请求使用的令牌为止。这里面就涉及到一个权衡,是让前一次请求干等到令牌够用才走掉呢,还是让它走掉后面的请求等一等呢?Guava的设计者选择的是后者,先把眼前的活干了,后面的事后面再说。
测试代码:
public class RateLimiterMain {
public static void main(String[] args) {
RateLimiter rateLimiter = RateLimiter.create(2);
System.out.println(rateLimiter.acquire(5));
System.out.println(rateLimiter.acquire(2));
System.out.println(rateLimiter.acquire(1));
}
}
输出内容:
0.0
2.496889
0.992149
可以看出,令牌桶每秒只能产生2个令牌,我们可以第一次取出5个,但是第二次再去取令牌的时候,需要等2.5s,也就是第一次令牌取完后,需要等2.5s才能取到令牌。同样的,第三次取1个令牌的时候,也需要等待第二次的1s的时间。也就是,取的速率可以超过令牌产生的速率,但是下一次再次去取的时候,需要阻塞等待。
当然也可以使用tryAcquire来非阻塞的获取,可以实时返回结果。另外tryAcquire也可以传入参数,也就是等待的时间,超时直接返回false。这点等同于常见的lock,tryLock。
三、并发控制Semapphore
一般来说,在网关系统中,还有一个参数叫并发控制,就是某一个资源可以被同时访问的个数。这种情况下,我们可以使用Semaphore来控制。
Semaphore不同于互斥锁。互斥锁是某个资源只能支持同时一个访问,而Semaphore可以支持多个访问,但是加上了总数的控制。
四、实战
4.1 在pom中加入guava依赖
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>18.0</version>
</dependency>
把限流服务封装到一个类中AccessLimitService,提供tryAcquire()方法,用来尝试获取令牌,返回true表示获取到,如下所示:
@Service
public class AccessLimitService {
//每秒只发出5个令牌
RateLimiter rateLimiter = RateLimiter.create(5.0);
/**
* 尝试获取令牌
* @return
*/
public boolean tryAcquire(){
return rateLimiter.tryAcquire();
}
}
调用方是个普通的controller,每次收到请求的时候都尝试去获取令牌,获取成功和失败打印不同的信息,如下:
@Controller
public class HelloController {
private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
@Autowired
private AccessLimitService accessLimitService;
@RequestMapping("/access")
@ResponseBody
public String access(){
//尝试获取令牌
if(accessLimitService.tryAcquire()){
//模拟业务执行500毫秒
try {
Thread.sleep(500);
}catch (InterruptedException e){
e.printStackTrace();
}
return "aceess success [" + sdf.format(new Date()) + "]";
}else{
return "aceess limit [" + sdf.format(new Date()) + "]";
}
}
}