转caffe scale layer

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u011681952/article/details/86157481

Scale Layer是输入进行缩放和平移,常常出现在BatchNorm归一化后,Caffe中常用BatchNorm+Scale实现归一化操作(等同Pytorch中BatchNorm)

首先我们先看一下 ScaleParameter

message ScaleParameter {
	  // The first axis of bottom[0] (the first input Blob) along which to apply
	  // bottom[1] (the second input Blob).  May be negative to index from the end
	  // (e.g., -1 for the last axis).
	  // 根据 bottom[0] 指定 bottom[1] 的形状
	  // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
	  // top[0] will have the same shape, and bottom[1] may have any of the
	  // following shapes (for the given value of axis):
	  //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
	  //    (axis == 1 == -3)          3;     3x40;     3x40x60
	  //    (axis == 2 == -2)                   40;       40x60
	  //    (axis == 3 == -1)                                60
	  // Furthermore, bottom[1] may have the empty shape (regardless of the value of
	  // "axis") -- a scalar multiplier.
	  // 例如,如果 bottom[0] 的 shape 为 100x3x40x60,则 top[0] 输出相同的 shape;
	  // bottom[1] 可以包含上面 shapes 中的任一种(对于给定 axis 值). 
	  // 而且,bottom[1] 可以是 empty shape 的,没有任何的 axis 值,只是一个标量的乘子.
	  optional int32 axis = 1 [default = 1];
  // (num_axes is ignored unless just one bottom is given and the scale is
  // a learned parameter of the layer.  Otherwise, num_axes is determined by the
  // number of axes by the second bottom.)
  // (忽略 num_axes 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数. 
  // 否则,num_axes 是由第二个 bottom 的数量来决定的.)
  // The number of axes of the input (bottom[0]) covered by the scale
  // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
  // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
  // bottom[0] 的 num_axes 是由 scale 参数覆盖的;
  optional int32 num_axes = 2 [default = 1];

  // (filler is ignored unless just one bottom is given and the scale is
  // a learned parameter of the layer.)
  // (忽略 filler 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数.
  // The initialization for the learned scale parameter.
  // scale 参数学习的初始化
  // Default is the unit (1) initialization, resulting in the ScaleLayer
  // initially performing the identity operation.
  // 默认是单位初始化,使 Scale 层初始进行单位操作.
  optional FillerParameter filler = 3;

  // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
  // may be more efficient).  Initialized with bias_filler (defaults to 0).
  // 是否学习 bias,等价于 ScaleLayer+BiasLayer,只不过效率更高
  // 采用 bias_filler 进行初始化. 默认为 0.
  optional bool bias_term = 4 [default = false];
  optional FillerParameter bias_filler = 5;

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

Scale layer 在prototxt里面的书写:

layer {
 	 name: "scale_conv1"
     type: "Scale"
	 bottom: "conv1"
     top: "conv1"
 scale_param {
    bias_term: true

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

例如在MobileNet中:

layer {
	  name: "conv6_4/scale"
	  type: "Scale"
	  bottom: "conv6_4/bn"
	  top: "conv6_4/bn"
	  param {
	    lr_mult: 1
	    decay_mult: 0
	  }
	  param {
	    lr_mult: 1
	    decay_mult: 0
	  }
	  scale_param {
	    bias_term: true
	  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
                                </div>
            <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-095d4a0b23.css" rel="stylesheet">
                </div>
posted @ 2019-09-24 17:47  core!  阅读(1111)  评论(0编辑  收藏  举报