seaborn绘图

 

散点图:

 1 import seaborn as sns
 2 import pandas as pd
 3 from matplotlib import pyplot as plt
 4 
 5 file_path = 'iris.csv'
 6 iris = pd.read_csv(file_path)
 7 
 8 # print(iris.info())
 9 print(iris.loc[:,'Name'].unique())
10 
11 
12 # hue 关于那一列数据进行区分  fit_reg 回归线
13 sns.lmplot(x='SepalLength',y='PetalLength',data=iris,hue='Name',fit_reg=False)
14 
15 plt.show()

 

 

直方图:

 

import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

s1 = pd.Series(np.random.randn(1000))

print(s1)

# 直方图
# plt.hist(s1)

# kde 密度图  hist 直方图
# kde = False 只显示直方图 hist = False 只显示核密度图  rug = True 显示观察条
sns.distplot(s1,kde=False)

# sns.kdeplot(s1,shade=True,color='r')



plt.show()

 

 

 

柱状图:

 

 1 import seaborn as sns
 2 import numpy as np
 3 import pandas as pd
 4 from matplotlib import pyplot as plt
 5 
 6 # 加载官方的在线数据
 7 
 8 df = sns.load_dataset('flights')
 9 
10 
11 df1 = df.pivot(index='month',columns='year',values='passengers')
12 
13 # 柱状图
14 s = df1.sum()
15 
16 _x = s.index
17 _y = s.values
18 
19 sns.barplot(_x,_y)
20 
21 
22 plt.show()

 

 

热力图:

import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# 加载官方的在线数据

df = sns.load_dataset('flights')


df1 = df.pivot(index='month',columns='year',values='passengers')
# print(df1.head())
# 热力图

# annot = True 显示value   fmt = 'd' 整数  cmap='颜色'
# sns.heatmap(df1,annot=True,fmt='d')

plt.show()

 

posted @ 2020-08-05 20:56  酸辣土豆皮  阅读(125)  评论(0)    收藏  举报