CF671C Ultimate Weirdness of an Array

n<=200000个数(<=200000),问所有的f(i,j)的和,f(i,j)表示去掉区间i到j后的剩余的数字中任选两个数的最大gcd

首先我们用\(nxt_l\)表示当\(f(l,r)\le i\)时,\(l\)对应的右端点\(r\)最往左能取到哪里,初始时\(nxt_l=l\),如果不存在合法右端点就记\(nxt_l=n+1\)

然后考虑从大到小枚举\(i\),当从\(f(l,r)\le i\)变为\(f(l,r)\le i-1\)时,我们需要删除\(gcd=i\)的贡献,找出\(i\)的倍数在原序列中的下标记为\(x_1,x_2......x_m\),而我们新得到的区间\([l,nxt_l']\)肯定是要满足包含\(m-1\)\(x_i\)的,不然答案就至少是\(i\)了,所以我们进行如下修改操作:

  • \(l\in(x_2,n]\)\(nxt_l=n+1\)

  • \(l\in(x_1,x_2]\)\(nxt_l=max(nxt_l,x_m)\)

  • \(l\in[1,x_1]\)\(nxt_l=max(nxt_l,x_{m-1})\)

2,3操作看似需要吉司机线段树来维护,但是我们冷静下来分析一波,\(nxt\)数组一定是单调不降,所以一定是进行区间的一段前缀覆盖,直接线段树上二分修改复杂度就是\(O(nlogn)\)

其实开始时\(O(n\sqrt n)\)处理每个数倍数的位置就已经足够了,但是也可以优化,因为我们最多只需要2个开头的和2个结尾的,那么直接合并\(i\)的倍数的集合就好了,复杂度是\(O(nlogn)\),我比较懒就直接写的第一种QAQ

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define zrt k << 1
#define yrt k << 1 | 1
const int N = 2e5;
using namespace std;
int n,a[N + 5],Mx;
long long ans,las;
vector <int> d[N + 5];
struct Seg
{
    long long sm[N * 5 + 5],tag[N * 4 + 5];
    int mi[N * 4 + 5],mx[N * 4 + 5];
    void pushup(int k)
    {
        sm[k] = sm[zrt] + sm[yrt];
        mi[k] = min(mi[zrt],mi[yrt]);
        mx[k] = max(mx[zrt],mx[yrt]);
    }
    void build(int k,int l,int r)
    {
        if (l == r)
        {
            mx[k] = mi[k] = sm[k] = l;
            return;
        }
        int mid = l + r >> 1;
        build(zrt,l,mid);
        build(yrt,mid + 1,r);
        pushup(k);
    }
    void cha(int k,int l,int r,int z)
    {
        sm[k] = 1ll * (r - l + 1) * z;
        mi[k] = mx[k] = z;
        tag[k] = z;
    }
    void pushdown(int k,int l,int r,int mid)
    {
        if (tag[k])
        {
            cha(zrt,l,mid,tag[k]);
            cha(yrt,mid + 1,r,tag[k]);
            tag[k] = 0;
        }
    }
    void modify(int k,int l,int r,int x,int y,int z)
    {
        if (x > y)
            return;
        if (r < x || l > y || mi[k] >= z)
            return;
        if (l >= x && r <= y && mx[k] <= z)
        {
            cha(k,l,r,z);
            return;
        }
        if (l == r)
        {
            sm[k] = mi[k] = mx[k] = z;
            return;
        }
        int mid = l + r >> 1;
        pushdown(k,l,r,mid);
        modify(zrt,l,mid,x,y,z);
        modify(yrt,mid + 1,r,x,y,z);
        pushup(k);
    }
}tree;
int main()
{
    scanf("%d",&n);
    for (int i = 1;i <= n;i++)
        scanf("%d",&a[i]),Mx = max(Mx,a[i]);
    for (int i = 1;i <= n;i++)
        for (int j = 1;j * j <= a[i];j++)
            if (a[i] % j == 0)
            {
                d[j].push_back(i);
                if (j * j != a[i])
                    d[a[i] / j].push_back(i);
            }
    tree.build(1,1,n);
    las = 1ll * n * (n + 1) - tree.sm[1];
    int x1,x2,x3,x4;
    for (int i = Mx;i >= 1;i--)
    {
        if (d[i].size() < 2)
            continue;
        x1 = *d[i].begin();
        x2 = *(d[i].begin() + 1);
        x3 = *(d[i].end() - 2);
        x4 = *(d[i].end() - 1);
        tree.modify(1,1,n,x2 + 1,n,n + 1);
        tree.modify(1,1,n,x1 + 1,x2,x4);
        tree.modify(1,1,n,1,x1,x3);
        ans += (las - (1ll * n * (n + 1) - tree.sm[1])) * i;
        las = 1ll * n * (n + 1) - tree.sm[1];
    }
    cout<<ans<<endl;
    return 0;
}
posted @ 2020-08-04 18:36  eee_hoho  阅读(160)  评论(0编辑  收藏  举报