HDFS基本原理及数据存取实战
---------------------------------------------------------------------------------------------------------------
[版权申明:本文系作者原创,转载请注明出处]
文章出处:http://blog.csdn.net/sdksdk0/article/details/51622547
作者:朱培
---------------------------------------------------------------------------------------------------------------
本文主要介绍了hdfs的基本原理、hdfs基本操作、hdfs的读取数据流程、namenode工作机制,rpc编程以及常见的两种必会的面试题等,旨在于全面深入的理解HDFS的基本工作流程并可以开发出简易的HDFS的程序。
一、HDFS简介
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。HDFS体系结构中有两类节点,一类是NameNode,又叫"元数据节点";另一类是DataNode,又叫"数据节点"。这两类节点分别承担Master和Worker具体任务的执行节点。总的设计思想:分而治之——将大文件、大批量文件,分布式存放在大量独立的服务器上,以便于采取分而治之的方式对海量数据进行运算分析。
HDFS是一个主/从(Mater/Slave)体系结构,从最终用户的角度来看,它就像传统的文件系统一样,可以通过目录路径对文件执行CRUD(Create、Read、Update和Delete)操作。但由于分布式存储的性质,HDFS集群拥有一个NameNode和一些DataNode。NameNode管理文件系统的元数据,DataNode存储实际的数据。客户端通过同NameNode和DataNodes的交互访问文件系统。客户端联系NameNode以获取文件的元数据,而真正的文件I/O操作是直接和DataNode进行交互的。
HDFS一般是用来“一次写入,多次读取”,不适合做实时交互性很强的事情,不适合存储大量小文件(当然,如果你偏要存大量小文件的话本文末尾会有解决方案).
二、HDFS工作原理
2.1基本原理
1 分布式文件系统,它所管理的文件是被切块存储在若干台datanode服务器上.
2 hdfs提供了一个统一的目录树来定位hdfs中的文件,客户端访问文件时只要指定目录树的路径即可,不用关心文件的具体物理位置.
3 每一个文件的每一个切块,在hdfs集群中都可以保存多个备份(默认3份),在hdfs-site.xml中,dfs.replication的value的数量就是备份的数量.
4 hdfs中有一个关键进程服务进程:namenode,它维护了一个hdfs的目录树及hdfs目录结构与文件真实存储位置的映射关系(元数据).而datanode服务进程专门负责接收和管理"文件块"-block.默认大小为128M(可配置),(dfs.blocksize).(老版本的hadoop的默认block是64M的)
2.2 常用操作
hdfs的根目录,通过这条命令可以查看hdfs存储的文件,在hadoop的安装目录下面:bin/hdfs dfs -ls /<pre name="code" class="html">hdfs dfs -chmod 600 /test.txt //设置文件权限 bin/hdfs dfs -df -h / //查看磁盘空间 bin/hdfs dfs -mkdir /aaa //新建文件夹 bin/hdfs dfs -tail //查看文件尾部hdfs块的存储位置位于:(在hadoop的根目录下面的tmp文件夹中)hadoop-2.5.2/tmp/hadoop/dfs/data/current/BP-33587274-127.0.0.1-1465370300743/current/finalized
从图中我们可以看到hdfs存储的块的,当然这里面的两个块通过合并可以形成一个新的文件,然后可以通过解压进行验证。
touch full hadoop.tar.gz cat blk_1073741825 >> hadoop.tar.gz cat blk_1073741826 >> hadoop.tar.gz tar -xvzf hadoop.tar.gz
同样,在hadoop的安装目录中,直接用命令来存取文件可以通过下面的命令:
存文件:
./hdfs dfs -put /home/admin1/桌面/test.txt hdfs://localhost:9000/
取文件:
./hdfs dfs -get hdfs://localhost:9000/test.txt
hdfs的权限控制:
客户端的操作命令
bin/hdfs dfs -chown aa:bgroup /test.txt
//将test.txt文件的权限改为aa用户的bgroup组.
(因为我根本就没有这个组和用户,但是也可以修改成功,所以说明hadoop本身对权限的控制不是很严格)
2.3 HDFS的shell操作
--appendToFile ----追加一个文件到已经存在的文件末尾
-->hadoop fs -appendToFile ./hello.txt hdfs://hadoop-server01:9000/hello.txt
可以简写为:
Hadoop fs -appendToFile ./hello.txt /hello.txt
-cat ---显示文件内容
-->hadoop fs -cat /hello.txt
-chgrp
-chmod
-chown
上面三个跟linux中的用法一样
-->hadoop fs -chmod 666 /hello.txt
-copyFromLocal #从本地文件系统中拷贝文件到hdfs路径去
-->hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/
-copyToLocal #从hdfs拷贝到本地
Eg: hadoop fs -copyToLocal /aaa/jdk.tar.gz
-count #统计一个指定目录下的文件节点数量
-->hadoop fs -count /aaa/
-cp #从hdfs的一个路径拷贝hdfs的另一个路径
hadoop fs -cp/aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-createSnapshot
-deleteSnapshot
-renameSnapshot
以上三个用来操作hdfs文件系统目录信息快照
-->hadoop fs -createSnapshot /
-df #统计文件系统的可用空间信息
-du
-->hadoop fs -df -h /
-->hadoop fs -du -s -h /aaa/*
-get #等同于copyToLocal,就是从hdfs下载文件到本地
-getmerge #合并下载多个文件
--> 比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /aaa/log.* ./log.sum
-help #输出这个命令参数手册
-ls #显示目录信息
-->hadoop fs -ls hdfs://hadoop-server01:9000/
这些参数中,所有的hdfs路径都可以简写
-->hadoop fs -ls / 等同于上一条命令的效果
-mkdir #在hdfs上创建目录
-->hadoop fs -mkdir -p /aaa/bbb/cc/dd
-moveFromLocal #从本地剪切粘贴到hdfs
-moveToLocal #从hdfs剪切粘贴到本地
-mv #在hdfs目录中移动文件
-put #等同于copyFromLocal
-rm #删除文件或文件夹
--> hadoop fs -rm -r/aaa/bbb/
-rmdir #删除空目录
-setrep #设置hdfs中文件的副本数量
-->hadoop fs -setrep 3 /aaa/jdk.tar.gz
-stat #显示一个文件或文件夹的元信息
-tail #显示一个文件的末尾
-text #以字符形式打印一个文件的内容
三、HDFS写入数据流程解析
3.1 基本原理
hdfs的数据写入是非常复杂的过程,下面来看一下简要的步骤。
那么问题来了,如果他们之间的一个datanode突然坏掉了怎么办。
1、如果传输过程中,有某个datanode出现了故障,那么当前的pipeline会被关闭,出现故障的datanode会从当前的pipeline中移除,剩余的block会继续剩下的datanode中继续以pipeline的形式传输,同时Namenode会分配一个新的datanode,保持replicas设定的数量。
2、关闭pipeline,将ack queue中的数据块放入data queue的开始。
3、当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。
4、失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。
5、元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。
6、客户端调用create()来创建文件
7、DistributedFileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件。
8、元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
9、DistributedFileSystem返回DFSOutputStream,客户端用于写数据。
10、客户端开始写入数据,DFSOutputStream将数据分成块,写入data queue。
11、Data queue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。
12、Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
13、DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
3.2 编码实践
@Test public void testUpload() throws IOException, InterruptedException, URISyntaxException{ Configuration conf = new Configuration(); //to get a client of the hdfs system FileSystem fs = FileSystem.get(new URI("hdfs://ubuntu2:9000"),conf,"admin1"); fs.copyFromLocalFile(new Path("/home/admin1/hadoop/eclipse.tar.gz"), new Path("/")); fs.close(); }
四、HDFS读取数据流程解析
4.1 基本原理
读取的流程比写入的流程就简单很多了。
4.2 编码实践
/*public static void main(String[] args) throws IOException { //download from hdfs Configuration conf = new Configuration(); conf.set("fs.defaultFS", "hdfs://ubuntu2:9000/"); conf.set("dfs.blocksize", "64"); //to get a client of the hdfs system FileSystem fs = FileSystem.get(conf); fs.copyToLocalFile(new Path("hdfs://ubuntu2:9000/test.txt"), new Path("/home/admin1/Downloads/test1.txt")); fs.close(); }*/删除文件:
@Test public void rmove() throws IOException, InterruptedException, URISyntaxException{ Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(new URI("hdfs://ubuntu2:9000"),conf,"admin1"); fs.delete(new Path("/test.txt")); fs.close(); }
五、NameNode工作机制
元数据放在内存中,同时需要备份,通过日志的记录(对元数据有修改操作时)写到磁盘中,用edits_ingropress,定期dump一次,当一旦断电时,很难恢复,
所以我们就用sercondName定期把操作日志下载和内存镜像文件,然后就定期合并操作记录,(日志+fsimage)然后生成一个新的namenode镜像文件 (fs.image.ckpt)
最后上传给namenode,然后namenode重命名为fsimage.
元数据管理机制:
1、元数据有3中存储形式:内存、edits日志、fsimage
2、最完整最新的元数据一定是内存中的这一部分
六、RPC编程
使用 RPC 编程是在客户机和服务器实体之间进行可靠通信的最强大、最高效的方法之一。它为在分布式计算环境中运行的几乎所有应用程序提供基础。任何 RPC 客户机-服务器程序的重要实体都包括 IDL 文件(接口定义文件)、客户机 stub、服务器 stub 以及由客户机和服务器程序共用的头文件。客户机和服务器 stub 使用 RPC 运行时库通信。RPC 运行时库提供一套标准的运行时例程来支持 RPC 应用程序。在一般的应用程序中,被调用的过程在相同的地址空间中运行,并把结果返回给发出调用的过程。在分布式环境中,客户机和服务器在不同的机器上运行,客户端调用在服务器端运行的过程,并把结果发送回客户机。这称为远程过程调用
(RPC),是 RPC 编程的基础。
以下实例是用来模拟用户登陆的过程。
在linux中的eclipse。新建一个java工程,新建java文件:
RPCServer.java
package hdfsTest; public interface RPCService { public static final long versionID=100L; //定义通信接口的版本号 public String userLogin(String username,String password); //用户名和密码 }RPCServerImpl.java
package hdfsTest; public class RPCServiceImpl implements RPCService { @Override public String userLogin(String username, String password) { return username+" logged in successfully!"; } }
RPCControl.java
package hdfsTest; import java.io.IOException; import java.net.InetSocketAddress; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.ipc.RPC; // public class RPCController { public static void main(String[] args) throws IOException { RPCService serverceImpl=RPC.getProxy(RPCService.class,100,new InetSocketAddress("ubuntu2",10000),new Configuration()); <span style="white-space:pre"> </span>//100是指前面设置的版本号,InetSocketAddress中的是hdfs主机名和10000是通信端口 String result=serverceImpl.userLogin("aaa", "aaa"); //设置用户用户名和密码 System.out.println(result); } }
package hdfsTest; import java.io.IOException; import org.apache.hadoop.HadoopIllegalArgumentException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.ipc.RPC; import org.apache.hadoop.ipc.RPC.Builder; import org.apache.hadoop.ipc.Server; public class ServerRunner { public static void main(String[] args) throws HadoopIllegalArgumentException, IOException { Builder builder=new RPC.Builder(new Configuration()); builder.setBindAddress("ubuntu2"); //hdfs的主机名 builder.setPort(10000); //设置通信端口号 builder.setProtocol(RPCService.class); builder.setInstance(new RPCServiceImpl()); Server server=builder.build(); server.start(); //开启服务 } }
运行结果:
七、常见问题分析
7.1.HDFS可不可以用来做网盘
1、容量成本太高,2、文件大小不确定,如果存大量小文件会造成很大的浪费 3、相对于网盘来说,文件读写的效率低 4、只适合一次写入,多次读取的操作
5、hdfs不支持文件内容修改,可支持往文件尾部追加内容。