BZOJ 2806: [Ctsc2012]Cheat(单调队列优化dp+后缀自动机)
解题思路
肯定先要建出来广义后缀自动机。刚开始以为是个二分+贪心,写了一下结果\(20\)分。说一下正解,首先显然\(L_0\)具有单调性,是可以二分的。考虑二分后怎样判合法,对于分割序列很容易想到\(dp\),设\(f_i\)表示前\(i\)个字符匹配成功数量,那么有转移方程\(f_i=max(f_j+i-j)(i-j>=L\) 且 \(j\)到\(i\)可以匹配 \()\),\(L\)是二分出来的限制,判断是否能匹配可以预处理,预处理出\(mth_i\)表示\(i\)最多能与往前\(mth_i\)位匹配成功,那么第二个条件就变成了\(j>=i-mth_i\)。如果这样做是\(O(n^2logn)\)的,实测可以拿到\(75\)分2333。考虑优化,发现\(i-mth_i\)具有单调性,因为每移动一格\(i\)会\(+1\),而\(mth_i\)最多\(+1\)。那么可以用一个单调递减队列来优化,每次将\(i-lim\)入队,取出队头更新答案,时间复杂度为\(O(nlogn)\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=1100005<<1;
int n,m,res,ans,f[N],mth[N],q[N],hd,tl;
char s[N];
struct SAM{
int ch[N][2],fa[N],l[N],lst,cnt;
void Insert(int c){
int p=lst,np=++cnt; l[np]=l[p]+1; lst=cnt;
for(;p && !ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=1;
else {
int q=ch[p][c];
if(l[p]+1==l[q]) fa[np]=q;
else {
int nq=++cnt; l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q]; fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
}
void prework(int len){
int now=1,num=0;
for(int i=1;i<=len;i++){
if(ch[now][s[i]-'0']) now=ch[now][s[i]-'0'],num++;
else {
for(;now && !ch[now][s[i]-'0'];now=fa[now]);
if(!now) now=1,num=0;
else num=l[now]+1,now=ch[now][s[i]-'0'];
}
mth[i]=num;
}
}
bool check(int lim,int len){
int tmp; hd=1; tl=0;
for(int i=1;i<=len;i++){
f[i]=f[i-1]; if(i<lim) continue; tmp=i-mth[i];
while(hd<=tl && f[q[tl]]-q[tl]<=f[i-lim]-i+lim) tl--;
q[++tl]=i-lim;
while(hd<=tl && q[hd]<tmp) hd++;
if(hd<=tl) f[i]=max(f[i],f[q[hd]]-q[hd]+i);
}
// for(int i=1;i<=len;i++){
// f[i]=f[i-1];
// for(int j=max(0,i-mth[i]);j+lim<=i;j++)
// f[i]=max(f[i],f[j]+i-j);
// }
return len-f[len]>res?0:1;
}
void solve(int len){
prework(len);
int L=1,R=len,mid;
while(L<=R){
mid=(L+R)>>1;
if(check(mid,len)) L=mid+1,ans=mid;
else R=mid-1;
}
printf("%d\n",ans);
}
}sam;
int main(){
scanf("%d%d",&n,&m); sam.cnt=1; int len;
for(int i=1;i<=m;i++){
scanf("%s",s+1); sam.lst=1;
len=strlen(s+1);
for(int j=1;j<=len;j++) sam.Insert(s[j]-'0');
}
for(int i=1;i<=n;i++){
scanf("%s",s+1); len=strlen(s+1);
res=(len*9+9)/10; res=len-res;
sam.solve(len); ans=0;
}
return 0;
}