BZOJ 3944: Sum(杜教筛)
解题思路
机房里的神仙们一万年前就会的东西拿出来学一学。杜教筛可以在\(O(n^{2/3})\)的时间内积性函数前缀和,做法如下。
首先设要求的是\(\sum\limits_{i=1}^n f(i)\)。设\(h=f*g\),\(S(x)=\sum\limits_{i=1}^nf(i)\),那么可以得出$$\sum\limits_{i=1}nh(i)=\sum\limits_{i=1}n\sum\limits_{d|n}g(d)f(\frac{n}{d})$$
换一下枚举顺序:
$$\sum\limits_{i=1}nh(i)=\sum\limits_{d=1}ng(d)\sum\limits_{i=1}^{n/d}f(i)$$
\[\sum\limits_{i=1}^nh(i)=\sum\limits_{d=1}^ng(d)S(n/d)
\]
把第一项提出来:
\[\sum\limits_{i=1}^nh(i)=g(1)S(n)+\sum\limits_{d=2}^ng(d)S(n/d)
\]
移项
\[g(1)S(n)=\sum\limits_{i=1}^nh(i)-\sum\limits_{d=2}^ng(d)S(n/d)
\]
发现要求的东西已经被放在左边了,只要找出一个好求前缀和的函数\(h\),后面部分可以数论分块解决,这个可以递归实现。这就是杜教筛的思路。现在要解决的问题就是如何找\(f,g\),然而坑的是这个玩意并没有什么通用的,似乎只能做题时自行\(yy\)。
这道题要求\(\mu\)和\(\phi\),而\(\mu*I=\epsilon\),\(\epsilon\)是元函数,当且仅当\(i=1\)时\(\epsilon(i)=1\),否则为\(0\),而\(I\)是恒等函数,\(I(i)=1\)。而\(\phi*id=\epsilon\),\(id\)是单位函数,\(id(i)=i\)。这样这道题就可以做了。在下人丑常数大还懒,所以这道题严重卡常,用\(map\)存平添\(log\),交了一页终于用循环展开大法过了。。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
const int N=3000005;
typedef long long LL;
template<class T> void rd(T &x){
x=0; char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
}
template<class T> void out(T x){
if(!x) return; out(x/10); putchar('0'+x%10);
}
int T,prime[N],miu[N],lim=3000000,cnt,sum2[N];
LL sum1[N],n,phi[N],ans1,ans2;
bool vis[N];
map<LL,LL> mp1;
map<int,int> mp2;
struct Data{
LL tmp1,tmp2;
Data(LL A=0,LL B=0){
tmp1=A; tmp2=B;
}
};
void prework(){
miu[1]=1; phi[1]=1;
for(register int i=2;i<=lim;++i){
if(!vis[i]) prime[++cnt]=i,miu[i]=-1,phi[i]=i-1;
for(register int j=1;j<=cnt && prime[j]*i<=lim;++j){
vis[prime[j]*i]=1;
if(!(i%prime[j])) {
vis[i*prime[j]]=1;
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
miu[i*prime[j]]=-miu[i];
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
register int i=1;
for(;i<=lim;i+=16){
sum1[i]=sum1[i-1]+phi[i];
sum1[i+1]=sum1[i]+phi[i+1];
sum1[i+2]=sum1[i+1]+phi[i+2];
sum1[i+3]=sum1[i+2]+phi[i+3];
sum1[i+4]=sum1[i+3]+phi[i+4];
sum1[i+5]=sum1[i+4]+phi[i+5];
sum1[i+6]=sum1[i+5]+phi[i+6];
sum1[i+7]=sum1[i+6]+phi[i+7];
sum1[i+8]=sum1[i+7]+phi[i+8];
sum1[i+9]=sum1[i+8]+phi[i+9];
sum1[i+10]=sum1[i+9]+phi[i+10];
sum1[i+11]=sum1[i+10]+phi[i+11];
sum1[i+12]=sum1[i+11]+phi[i+12];
sum1[i+13]=sum1[i+12]+phi[i+13];
sum1[i+14]=sum1[i+13]+phi[i+14];
sum1[i+15]=sum1[i+14]+phi[i+15];
sum2[i]=sum2[i-1]+miu[i];
sum2[i+1]=sum2[i]+miu[i+1];
sum2[i+2]=sum2[i+1]+miu[i+2];
sum2[i+3]=sum2[i+2]+miu[i+3];
sum2[i+4]=sum2[i+3]+miu[i+4];
sum2[i+5]=sum2[i+4]+miu[i+5];
sum2[i+6]=sum2[i+5]+miu[i+6];
sum2[i+7]=sum2[i+6]+miu[i+7];
sum2[i+8]=sum2[i+7]+miu[i+8];
sum2[i+9]=sum2[i+8]+miu[i+9];
sum2[i+10]=sum2[i+9]+miu[i+10];
sum2[i+11]=sum2[i+10]+miu[i+11];
sum2[i+12]=sum2[i+11]+miu[i+12];
sum2[i+13]=sum2[i+12]+miu[i+13];
sum2[i+14]=sum2[i+13]+miu[i+14];
sum2[i+15]=sum2[i+14]+miu[i+15];
}
for(;i<=lim;++i)
sum1[i]=sum1[i-1]+phi[i],
sum2[i]=sum2[i-1]+miu[i];
}
Data solve(LL x){
if(x<=lim) {return Data(sum1[x],sum2[x]);}
if(mp1[x]) {return Data(mp1[x],mp2[x]);}
Data tmp,nxt; tmp.tmp1=(LL)x*(x+1)/2;
tmp.tmp2=1;
for(register LL l=2,r;l<=x;l=r+1){
r=x/(x/l); nxt=solve(x/l);
tmp.tmp1-=(r-l+1)*nxt.tmp1;
tmp.tmp2-=(r-l+1)*nxt.tmp2;
}
mp1[x]=tmp.tmp1; mp2[x]=tmp.tmp2;
return tmp;
}
signed main(){
rd(T); prework(); Data zz;
while(T--){
rd(n); zz=solve(n);
ans1=zz.tmp1; ans2=zz.tmp2;
if(!ans1) putchar('0');
else out(ans1); putchar(' ');
if(!ans2) putchar('0');
else {
if(ans2<0) putchar('-'),ans2=-ans2;
out(ans2);
} putchar('\n');
}
return 0;
}