Fork me on GitHub

matlab中的卷积——filter,conv之间的区别

%Matlab提供了计算线性卷积和两个多项式相乘的函数conv,语法格式w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量。 
%如果向量u和v的长度分别为N和M,则向量w的长度为N+M-1.如果向量u和v是两个多项式的系数,则w就是这两个多项式乘积的系数。 
x=ones(1,4);                                        %x(n)=R4(n) 
h=ones(1,4);                                        %h(n)=R4(n)                    
y=conv(x,h);                                        %y(n)=x(n) * h(n)       

conv是做卷积,就是按照书上的做法,先翻转,在一步步平移,得出结果。对于两个长度分别为n,m的序列,卷积结果长度为m+n-1

filter是做滤波,其实原理跟卷积是想通的,只不过处理结果的方法不同,先看示例程序:

 

 
  1. x=[1,2,3,4,5];  
  2. h=[1,1,1];  
  3.   
  4. y1=conv(h,x)  
  5. y2=filter(h,1,x)  
  6. y3=filter(x,1,h)  
  7. y4=filter(x,1,[h,zeros(1,4)])  

结果为:

 

 

  1. y1 =  
  2.   
  3.      1     3     6     9    12     9     5  
  4.   
  5.   
  6. y2 =  
  7.   
  8.      1     3     6     9    12  
  9.   
  10.   
  11. y3 =  
  12.   
  13.      1     3     6  
  14.   
  15.   
  16. y4 =  
  17.   
  18.      1     3     6     9    12     9     5  

现在对结果一一作出解释;

 

1.y1的确是严格按照卷积的数学表达式计算的,不解释。

在解释后面几条时,先说一下filter的用法:filter(B,A,X),其中B,A组成一个差分方程,X是输入信号,例如:

filter([1,2],1,[1,2,3,4,5])实现  y[k]=x[k]+2*x[k-1]
咱们这里讨论的就是A=1的情况。有了基本说明,现在言归正传:

2.说明filter函数平移停滞在X的最后一个输入与滤波器的第一个系数对齐时。这里为

 


 
  1.                 1   1   1  
  2. 5   4   3   2   1  
  3. 输出1,到  
  4.                 1   1   1  
  5.                 5   4   3   2   1  
  6. 输出12  

 

3.验证2的观点,这里为:


 

 
  1.         1   2   3   4   5  
  2. 1   1   1  
  3. 输出1,到  
  4.         1   2   3   4   5  
  5.         1   1   1  
  6. 输出6  


 

4.依然是验证2的观点,从

 


 
  1.                 1   2   3   4   5  
  2. 0   0   0   0   1   1   1   1  
  3. 输出1,到  
  4.                 1   2   3   4   5  
  5.                 0   0   0   0   1   1   1   1  
  6. 输出5   


 

并且,第4种情况下,通过补0使得所有的1都移到了滤波器抽头的末尾,这个结果与卷积是相同的。

 

到这里,我想大家就明白了二者的区别和关系。

 

 

在MATLAB中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。

(1)即y=filter(p,d,x)用来实现差分方程,d表示差分方程输出y的系数,p表示输入x的系数,而x表示输入序列。输出结果长度数等于x的长度。

实现差分方程,先从简单的说起:
filter([1,2],1,[1,2,3,4,5]),实现y[k]=x[k]+2*x[k-1]
y[1]=x[1]+2*0=1    (x[1]之前状态都用0)
y[2]=x[2]+2*x[1]=2+2*1=4

(2)y=conv(x,h)是用来实现卷级的,对x序列和h序列进行卷积,输出的结果个数等于x的长度与h的长度之和减去1。

卷积公式:z(n)=x(n)*y(n)= ∫x(m)y(n-m)dm.

程序一:以下两个程序的结果一样

(1)h = [3 2 1 -2 1 0 -4 0 3]; % impulse response

          x = [1 -2 3 -4 3 2 1]; % input sequence

         y = conv(h,x);

         n = 0:14;

         subplot(2,1,1);

         stem(n,y);

         xlabel('Time index n'); ylabel('Amplitude');

        title('Output Obtained by Convolution'); grid;

(2)x1 = [x zeros(1,8)];

          y1 = filter(h,1,x1);

          subplot(2,1,2);

         stem(n,y1);

         xlabel('Time index n'); ylabel('Amplitude');

         title('Output Generated by Filtering'); grid;

 

 

程序二:filter和conv的不同

               x=[1,2,3,4,5];
               h=[1,1,1];

               y1=conv(h,x)
               y2=filter(h,1,x)
               y3=filter(x,1,h)

 结果:y1 = 1     3     6     9    12     9     5

       y2 = 1     3     6     9    12

‍              y3  = 1     3     6  

可见:filter函数y(n)是从n=1开始,认为所有n<1都为0;而conv是从卷积公式计算,包括n<1部分。

                因此filter 和conv 的结果长短不同

程序三:滤波后信号幅度的变化

                num=100; %总共1000个数 
                x=rand(1,num); %生成0~1随机数序列 
                x(x>0.5)=1; 
                x(x<=0.5)=-1;
                h1=[0.2,0.5,1,0.5,0.2]; 
                h2=[0,0,1,0,0];
                y1=filter(h1,1,x);
                y2=filter(h2,1,x);
                n=0:99;
                subplot(2,1,1);
                stem(n,y1);
                subplot(2,1,2); 
                stem(n,y2);

 

 

MATLAB中提供了卷积运算的函数命令conv2,其语法格式为: 
C = conv2(A,B) 
C = conv2(A,B)返回矩阵A和B的二维卷积C。若A为ma×na的矩阵,B为mb×nb的矩阵,则C的大小为(ma+mb-1)×(na+nb-1)。 


例: 
A=magic(5) 
A = 
17 24 1 8 15 
23 5 7 14 16 
4 6 13 20 22 
10 12 19 21 3 
11 18 25 2 9 
>> B=[1 2 1 ;0 2 0;3 1 3] 
B = 
1 2 1 
0 2 0 
3 1 3 
>> C=conv2(A,B) 
C = 
17 58 66 34 32 38 15 
23 85 88 35 67 76 16 
55 149 117 163 159 135 67 
79 78 160 161 187 129 51 
23 82 153 199 205 108 75 
30 68 135 168 91 84 9 
33 65 126 85 104 15 27 
MATLAB图像处理工具箱提供了基于卷积的图象滤波函数filter2,filter2的语法格式为: 
Y = filter2(h,X) 
其中Y = filter2(h,X)返回图像X经算子h滤波后的结果,默认返回图像Y与输入图像X大小相同。例如: 
其实filter2和conv2是等价的。MATLAB在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算。 
Fspecial函数用于创建预定义的滤波算子,其语法格式为: 
h = fspecial(type) 
h = fspecial(type,parameters) 
参数type制定算子类型,parameters指定相应的参数,具体格式为: 
type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。 
type= 'gaussian',为高斯低通滤波器,参数有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为0.5

posted @ 2016-05-02 00:03  stardsd  阅读(13749)  评论(0编辑  收藏  举报